Что называется конденсатор

Виды конденсаторов и их применение

Конденсатор — это электрический (электронный) компонент, состоящий из двух проводников (обкладок), разделенных между собой слоем диэлектрика. Существует много видов конденсаторов. В основном они делятся по материалу из которого изготовлены обкладки и по типу используемого диэлектрика между ними.

Виды конденсаторов

Бумажные и металлобумажные конденсаторы

У бумажного конденсатора диэлектриком, разделяющим фольгированные обкладки, является специальная конденсаторная бумага. В электронике бумажные конденсаторы могут применяться как в цепях низкой частоты, так и в высокочастотных цепях.

Хорошим качеством электрической изоляции и повышенной удельной емкостью обладают герметичные металлобумажные конденсаторы, у которых вместо фольги (как в бумажных конденсаторах) используется вакуумное напыление металла на бумажный диэлектрик.

Бумажный конденсатор не имеет большую механическую прочность, поэтому его начинку помещают в металлический корпус, служащий механической основой его конструкции.

Электролитические конденсаторы

В электролитических конденсаторах, в отличии от бумажных, диэлектриком является тонкий слой оксида металла, образованный электрохимическим способом на положительной обложке из того же металла.

Вторую обложку представляет собой жидкий или сухой электролит. Материалом, создающим металлический электрод в электролитическом конденсаторе, может быть, в частности, алюминий и тантал. Традиционно, на техническом жаргоне «электролитом» называют алюминиевые конденсаторы с жидким электролитом.

Но, на самом деле, к электролитическим также относятся и танталовые конденсаторы с твердым электролитом (реже встречаются с жидким электролитом). Почти все электролитические конденсаторы поляризованы, и поэтому они могут работать только в цепях с постоянным напряжением с соблюдением полярности.

В случае инверсии полярности, может произойти необратимая химическая реакция внутри конденсатора, ведущая к разрушению конденсатора, вплоть до его взрыва по причине выделяемого внутри него газа.

К электролитическим конденсаторам так же относится, так называемые, суперконденсаторы (ионисторы) обладающие электроемкостью, доходящей порой до нескольких тысяч Фарад.

Алюминиевые электролитические конденсаторы

В качестве положительного электрода используется алюминий. Диэлектрик представляет собой тонкий слой триоксида алюминия (Al2O3),

  • работают корректно только на малых частотах;
  • имеют большую емкость.

Характеризуются высоким соотношением емкости к размеру: электролитические конденсаторы обычно имеют большие размеры, но конденсаторы другого типа, одинаковой емкости и напряжением пробоя были бы гораздо больше по размеру.

Характеризуются высокими токами утечки, имеют умеренно низкое сопротивление и индуктивность.

Танталовые электролитические конденсаторы

Это вид электролитического конденсатора, в котором металлический электрод выполнен из тантала, а диэлектрический слой образован из пентаоксида тантала (Ta2O5).

  • высокая устойчивость к внешнему воздействию;
  • компактный размер: для небольших (от нескольких сотен микрофарад), размер сопоставим или меньше, чем у алюминиевых конденсаторов с таким же максимальным напряжением пробоя;
  • меньший ток утечки по сравнению с алюминиевыми конденсаторами.

Полимерные конденсаторы

В отличие от обычных электролитических конденсаторов, современные твердотельные конденсаторы вместо оксидной пленки, используемой в качестве разделителя обкладок, имеют диэлектрик из полимера. Такой вид конденсатора не подвержен раздуванию и утечке заряда.

Физические свойства полимера способствуют тому, что такие конденсаторы отличаются большим импульсным током, низким эквивалентным сопротивлением и стабильным температурным коэффициентом даже при низких температурах.

Полимерные конденсаторы могут заменять электролитические или танталовые конденсаторы во многих схемах, например, в фильтрах для импульсных блоков питания, или в преобразователях DC-DC.

Пленочные конденсаторы

В данном виде конденсатора диэлектриком является пленка из пластика, например, полиэстер (KT, MKT, MFT), полипропилен (KP, MKP, MFP) или поликарбонат (KC, MKC).

Электроды могут быть напыленными на эту пленку (MKT, MKP, MKC) или изготовлены в виде отдельной металлической фольги, сматывающейся в рулон или спрессованной вместе с пленкой диэлектрика (KT, KP, KC). Современным материалом для пленки конденсаторов является полифениленсульфид (PPS).

Общие свойства пленочных конденсаторов (для всех видов диэлектриков):

  • работают исправно при большом токе;
  • имеют высокую прочность на растяжение;
  • имеют относительно небольшую емкость;
  • минимальный ток утечки;
  • используется в резонансных цепях и в RC-снабберах.

Отдельные виды пленки отличаются:

  • температурными свойствами (в том числе со знаком температурного коэффициента емкости, который является отрицательным для полипропилена и полистирола, и положительным для полиэстера и поликарбоната)
  • максимальной рабочей температурой (от 125 °C, для полиэстера и поликарбоната, до 100 °C для полипропилена и 70 °С для полистирола)
  • устойчивостью к электрическому пробою, и следовательно максимальным напряжением, которое можно приложить к определенной толщине пленки без пробоя.

Конденсаторы керамические

Этот вид конденсаторов изготавливают в виде одной пластины или пачки пластин из специального керамического материала. Металлические электроды напыляют на пластины и соединяют с выводами конденсатора. Используемые керамические материалы могут иметь очень разные свойства.

Разнообразие включает в себя, прежде всего, широкий диапазон значений относительной электрической проницаемости (до десятков тысяч) и такая величина имеется только у керамических материалов.

Столь высокое значение проницаемости позволяет производить керамические конденсаторы (многослойные) небольших размеров, емкость которых может конкурировать с емкостью электролитических конденсаторов, и при этом работающих с любой поляризацией и характеризующихся меньшими утечками.

Керамические материалы характеризуются сложной и нелинейной зависимостью параметров от температуры, частоты, напряжения. В виду малого размера корпуса — данный вид конденсаторов имеет особую маркировку.

Конденсаторы с воздушным диэлектриком

Здесь диэлектриком является воздух. Такие конденсаторы отлично работают на высоких частотах, и часто выполняются как конденсаторы переменной емкости (для настройки).

Конденсаторы для «чайников»

Если вы регулярно занимаетесь созданием электрических схем, вы наверняка использовали конденсаторы. Это стандартный компонент схем, такой же, как сопротивление, который вы просто берёте с полки без раздумий. Мы используем конденсаторы для сглаживания пульсаций напряжения/тока, для согласования нагрузок, в качестве источника энергии для маломощных устройств, и других применений.

Но конденсатор – это не просто пузырёк с двумя проводочками и парой параметров – рабочее напряжение и ёмкость. Существует огромный массив технологий и материалов с разными свойствами, применяемых для создания конденсаторов. И хотя в большинстве случаев для любой задачи сгодится практически любой конденсатор подходящей ёмкости, хорошее понимание работы этих устройств может помочь вам выбрать не просто нечто подходящее, а подходящее наилучшим образом. Если у вас когда-нибудь была проблема с температурной стабильностью или задача поиска источника дополнительных шумов – вы оцените информацию из этой статьи.

Начнём с простого

Лучше начать с простого и описать основные принципы работы конденсаторов, прежде чем переходить к настоящим устройствам. Идеальный конденсатор состоит из двух проводящих пластинок, разделённых диэлектриком. Заряд собирается на пластинах, но не может перетекать между ними – диэлектрик обладает изолирующими свойствами. Так конденсатор накапливает заряд.

Ёмкость измеряется в фарадах: конденсатор в один фарад выдаёт напряжение в один вольт, если в нём находится заряд в один кулон. Как и у многих других единиц системы СИ, у неё непрактичный размер, поэтому, если не брать в расчёт суперконденсаторы, о которых мы здесь говорить не будем, вы скорее всего встретитесь с микро-, нано- и пикофарадами. Ёмкость любого конденсатора можно вывести из его размеров и свойств диэлектрика – если интересно, формулу для этого можно посмотреть в Википедии. Запоминать её не нужно, если только вы не готовитесь к экзамену – но в ней содержится один полезный факт. Ёмкость пропорциональна диэлектрической проницаемости εr использованного диэлектрика, что в результате привело к появлению в продаже различных конденсаторов, использующих разные диэлектрические материалы для достижения больших ёмкостей или улучшения характеристик напряжения.


Паразитные индуктивность и сопротивление реального конденсатора

С использованием диэлектриков в конденсаторах есть одна проблемка, наряду с тем, что диэлектрик с нужными характеристиками обладает неприятными побочными эффектами. У всех конденсаторов есть небольшие паразитные сопротивление и индуктивность, которые иногда могут влиять на его работу. Электрические постоянные меняются от температуры и напряжения, пьезоэлектричества или шума. Некоторые конденсаторы стоят слишком дорого, у некоторых существуют состояния отказа. И вот мы подошли к основной части статьи, в которой расскажем о разных типах конденсаторов, и об их свойствах, полезных и вредных. Мы не будем освещать все возможные технологии, хотя большинство обычных мы опишем.

Алюминиевые электролитические

Алюминиевые электролитические конденсаторы используют анодно-оксидированный слой на алюминиевом листе в качестве одной пластины-диэлектрика, и электролит из электрохимической ячейки в качестве другой пластины. Наличие электрохимической ячейки делает их полярными, то есть напряжение постоянного тока должно прикладываться в одном направлении, и анодированная пластина должна быть анодом, или плюсом.

На практике их пластины выполнены в виде сэндвича из алюминиевой фольги, завёрнутой в цилиндр и расположенной в алюминиевой банке. Рабочее напряжение зависит от глубины анодированного слоя.

У электролитических конденсаторов наибольшая среди распространённых ёмкость, от 0,1 до тысяч мкФ. Из-за плотной упаковки электрохимической ячейки у них наблюдается большая эквивалентная последовательная индуктивность (equivalent series inductance, ESI, или эффективная индуктивность), из-за чего их нельзя использовать на высоких частотах. Обычно они используются для сглаживания питания и развязывания, а также связывания на аудиочастотах.

Танталовые электролитические


Танталовый конденсатор поверхностного размещения

Танталовые электролитические конденсаторы изготавливаются в виде спечённого танталового анода с большой площадью поверхности, на которой выращивается толстый слой оксида, а затем в качестве катода размещается электролит из диоксида марганца. Комбинация большой площади поверхности и диэлектрических свойств оксида тантала приводит к высокой ёмкости в пересчёте на объём. В результате такие конденсаторы выходят гораздо меньше алюминиевых конденсаторов сравнимой ёмкости. Как и у последних, у танталовых конденсаторов есть полярность, поэтому постоянный ток должен идти в строго одном направлении.

Их доступная ёмкостью варьируется от 0,1 до нескольких сотен мкФ. У них гораздо меньше сопротивление утечки и эквивалентное последовательное сопротивление (ESR), в связи с чем они используются в тестировании, измерительных приборах и высококачественных аудиоустройствах – там, где эти свойства полезны.

В случае танталовых конденсаторов необходимо особенно следить за тем, чтобы они не вышли из строя — бывает, что в таком случае они загораются. Аморфный оксид тантала – хороший диэлектрик, а в кристаллической форме он становится хорошим проводником. Неправильное использование танталового конденсатора – например, подача слишком большого пускового тока может привести к переходу диэлектрика в другую форму, что увеличит проходящий через него ток. Правда, репутация, связанная с возгораниями, появилась у более ранних поколений танталовых конденсаторов, и улучшенные методы производства привели к созданию более надёжной продукции.

Полимерные плёнки

Целое семейство конденсаторов использует полимерные плёнки в качестве диэлектриков, а плёнка либо находится между витыми или перемежающимися слоями металлической фольги, либо имеет металлизированный слой на поверхности. Их рабочее напряжение может доходить до 1000 В, но высокими ёмкостями они не обладают – это обычно от 100 пФ до единиц мкФ. У каждого вида плёнки есть свои плюсы и минусы, но в целом всё семейство отличается более низкими ёмкостью и индуктивностью, чем у электролитических. Посему они используются в высокочастотных устройствах и для развязывания в электрически шумных системах, а также в системах общего назначения.

Полипропиленовые конденсаторы используются в схемах, требующих хорошей тепловой и частотной стабильности. Также они используются в системах питания, для подавления ЭМП, в системах, использующих переменные токи высокого напряжения.

Полиэстеровые конденсаторы, хотя и не обладают такими температурными и частотными характеристиками, получаются дешёвыми и выдерживают большие температуры при пайке для поверхностного монтажа. В связи с этим они используются в схемах, предназначенных для использования в некритичных приложениях.

Полиэтилен-нафталатовые конденсаторы. Не обладают стабильными температурными и частотными характеристиками, но могут выдерживать гораздо большие температуры и напряжения по сравнению с полиэстеровыми.

Полиэтилен-сульфидовые конденсаторы обладают температурными и частотными характеристиками полипропиленовых, и в дополнение выдерживают высокие температуры.

В старом оборудовании можно наткнуться на поликарбонатные и полистиреновые конденсаторы, но сейчас они уже не используются.

Керамика

История керамических конденсаторов довольно длинная – они использовались с первых десятилетий прошлого века и по сей день. Ранние конденсаторы представляли собою один слой керамики, металлизированной с обеих сторон. Более поздние бывают и многослойными, где пластины с металлизацией и керамика перемежаются. В зависимости от диэлектрика их ёмкости варьируются от 1 пФ до десятков мкФ, а напряжения достигают киловольт. Во всех отраслях электроники, где требуется малая ёмкость, можно встретить как однослойные керамические диски, так и многослойные пакетные конденсаторы поверхностного монтажа.

Проще всего классифицировать керамические конденсаторы по диэлектрикам, поскольку именно они придают конденсатором все свойства. Диэлектрики классифицируют по трёхбуквенным кодам, где зашифрована их рабочая температура и стабильность.

C0G лучшая стабильность в ёмкости по отношению к температуре, частоте и напряжению. Используются в высокочастотных схемах и других контурах высокого быстродействия.

X7R не обладают такими хорошими характеристиками по температуре и напряжению, посему используются в менее критичных случаях. Обычно это развязывание и различные универсальные приложения.

Y5V обладают гораздо большей ёмкостью, но характеристики температуры и напряжения у них ещё ниже. Также используются для развязывания и в различных универсальных приложениях.

Поскольку керамика часто обладает и пьезоэлектрическими свойствами, некоторые керамические конденсаторы демонстрируют и микрофонный эффект. Если вы работали с высокими напряжениями и частотами в аудиодиапазоне, например, в случае ламповых усилителей или электростатики, вы могли услышать, как «поют» конденсаторы. Если вы использовали пьезоэлектрический конденсатор для обеспечения частотной стабилизации, вы могли обнаружить, что его звук модулируется вибрацией его окружения.

Как мы уже упоминали, статья не ставит целью охватить все технологии конденсаторов. Взглянув в каталог электроники вы обнаружите, что некоторые технологии, имеющиеся в наличии, здесь не освещены. Некоторые предложения из каталогов уже устарели, или же имеют такую узкую нишу, что с ними чаще всего и не встретишься. Мы надеялись лишь развеять некоторые тайны по поводу популярных моделей конденсаторов, и помочь вам в выборе подходящих компонентов при разработке собственных устройств. Если мы разогрели ваш аппетит, вы можете изучить нашу статью по катушкам индуктивности.

Об обнаруженных вами неточностях и ошибках прошу писать через личные сообщения сайта. Спасибо.

Что такое конденсатор

Конденсатор , кондер , кондюк – так его называют бывалые” специалисты один из самых распространенных элементов применяемое в различных электрических цепях. Конденсатор способен накапливать в себе заряд электрического тока и передавать его другим элементам в электроцепи.
Простейший конденсатор состоят из двух пластинчатых электродов, разделенных диэлектриком, на этих электродах накапливается электрический заряд разной полярности, на одной пластин будет положительный заряд на другой отрицательный.

Принцип работы конденсатора и его назначение – постараюсь кратко и предельно понятно ответить на эти вопросы. В электрических схемах данные устройства могут использоваться с различными целями, но их основной функцией является сохранение электрического заряда, то есть, конденсатор получает электрический ток, сохраняет его и впоследствии передает в цепь.

При подключении конденсатора к электрической сети на электродах конденсатора начинает накапливаться электрический заряд. В начале зарядки конденсатор потребляет наибольшую величину электрического тока, по мере зарядки конденсатора электроток уменьшается и когда емкость конденсатора будет наполнена ток пропадет совсем.

При отключении электрической цепи от источника питания и подключении нагрузки, конденсатор перестает получать заряд и отдает накопленный ток другим элементам, сам, как бы становится источником питания.

Основная техническая характеристика конденсатора, это емкость. Емкостью называется способность конденсатора накапливать электрический заряд. Чем больше емкость конденсатора, тем большее количество заряда он может накопить и соответственно отдать обратно в электрическую цепь. Емкость конденсатора измеряется в Фарадах. Конденсаторы различаются по конструкции, материалов из которых они изготовлены и области применения. Самый распространенный конденсатор это – конденсатор постоянной емкости, обозначается он так –

Конденсаторы постоянной емкости изготавливаются из самых различных материалов и могут быть – металлобумажными, слюдяными, керамическими. Такие конденсаторы как электрокомпонент используются во всех электронных устройствах.

Электролитический конденсатор

Следующий распространенный тип конденсаторов это – полярные электролитические конденсаторы, его изображение на электрической схеме выглядит так –

Электролитический конденсатор так же можно назвать постоянным конденсатором, потому, что их емкость не меняется.

Но э лектролитические конденсаторы имеют очень важно отличие, знак (+) возле одного из электродов конденсатора говорит о том, что это полярный конденсатор и при подключении его в цепь нужно соблюдать полярность. Плюсовой электрод необходимо подключить к плюсу источника питания, а минусовой (который без плюсика) соответственно к отрицательному – (на корпусе современных конденсаторов наносят обозначение минусового электрода, а вот плюсовой не обозначают никак).

Не соблюдение этого правила может привести к выходу конденсатора из строя и даже взрыву, сопровождающемуся разлетом бумаги фольги и нехорошим запахом (от конденсатора конечно…). Электролитические конденсаторы могут иметь очень большую емкость и соответственно накапливать, довольно большой потенциал. Поэтому электролитические конденсаторы даже после отключения питания таят в себе опасность, и при неосторожном обращении ты можешь получить сильный удар электрического тока. Поэтому после снятия напряжения для безопасной работы с электрическим устройством (ремонте электроники, настройке, и т.д.) электролитический конденсатор необходимо разрядить, замкнув накоротко его электроды, (делать это нужно специальным разрядником) особенно это касается конденсаторов большой емкости которые установлены на блоках питания, где есть высокое напряжение.

Конденсаторы переменной емкости.

Как ты понял из названия переменные конденсаторы могут изменять свою емкость – например при настройке радиоприемников. Еще совсем недавно для настройки радиоприемников на нужную станцию использовались только конденсаторы переменной емкости, вращая ручку настройки приемника тем самым изменяли емкость конденсатора. Переменные конденсаторы используются и посей день в простых недорогих моделях приемников и передатчиков. Конструкция переменного конденсатора очень простая. Конструктивно он состоит из статорных и роторных пластин, роторные пластины подвижные и входят в статорные е касаясь последних. Диэлектриком в таком конденсаторе является воздух. При входе статорных пластин в роторные емкость конденсатора увеличивается, при выходе роторных пластин емкость уменьшается. Обозначение переменного конденсатора выгляди так –

ПРИМЕНЕНИЕ КОНДЕНСАТОРОВ

Конденсаторы нашли широкое применение во всех областях электротехники, они используются в различных электрических цепях.
В электроцепи переменного тока они могут служить в качестве ёмкостного сопротивления. Возьмем такой пример, при последовательном подключении конденсатора и лампочки к батарейке (постоянный ток), лампочка светиться не будет.

Если же подключить такую цепь к источнику переменного тока, лампочка будет светиться, причем интенсивность света будет напрямую зависеть от величины ёмкости используемого конденсатора.

Благодаря этим качествам, конденсаторы применяются в качестве фильтров, в цепях подавляющих высокочастотные и низкочастотные помехи.

Конденсаторы также используются в различных импульсных схемах, где требуется быстрое накопление и отдача большого электрического заряда, в ускорителях, фотовспышках, импульсных лазерах, благодаря способности накапливать большой электрический заряд и быстро передавать его другим элементам сети с низким сопротивлением, создавая мощный импульс. Конденсаторы применяют для сглаживания пульсаций при выпрямлении напряжения. Способность конденсатора сохранять заряд длительное время дает возможность использовать их для хранения информации. И это только очень краткий перечень всего где может применяться конденсатор.

Продолжая занятия электротехникой, ты откроешь для себя еще много интересного в том числе и о работе и применению конденсаторов. Но, и этой информации, тебе будет достаточно для общего понимания и продвижения дальше.

Как проверить конденсатор

Для проверки конденсаторов необходим прибор, тестер или иначе мультиметр . Существуют специальные приборы измеряющие емкость (С), но эти приборы стоят денег, и зачастую нет смысла их приобретать для домашней мастерской, тем более на рынке есть недорогие китайские мультиметры с функцией измерения емкости. Если на твоем тестере нет такой функции, ты можешь воспользоваться обычной функцией прозвонки – к ак прозванивать мультиметром , как и при проверке резисторов – что такое резистор . Конденсатор можно проверить на “пробой” в этом случае сопротивление конденсатора очень большое, почти бесконечное (зависит от материала из которого изготовлен кондер). Электролитические конденсаторы проверяют следующим образом – Необходимо включить тестер в режим прозвонки, подключить щупы прибора к электродам (ножкам) конденсатора и следить за показанием на индикаторе мультиметра, показание мультиметра будет изменяться в меньшую сторону, пока не остановится совсем. После чего нужно щупы поменять местами, показания начнут уменьшаться почти до нуля. Если все произошло так как я описал, “кондер” исправен. Если нет изменений в показаниях или показания сразу становятся большими или прибор вовсе показывает ноль, конденсатор неисправен. Лично я предпочитаю проверять “кондюки” стрелочным прибором плавность движения стрелки легче отслеживать, чем мелькание цифр в окошке индикатора.

Рассчитать емкость конденсатора можно по формуле:

Емкость конденсатора измеряется в Фарадах, 1 фарад – это огромная величина. Такую ёмкость будет иметь металлический шар размеры которого будут превышать размеры нашего солнца в 13 раз. Шар размером в планету Земля будет иметь иметь емкость всего 710 микрофарад. Обычно, емкость конденсаторов которые мы применяем в электротехнических устройствах обзначается в микрофарадах (mF), пикофарадах (nF), нанофарадах ( nF). Следует знать что, 1 микрофарад равен 1000 нанофарад. Соответственно, 0.1 uF равен 100 nF. Кроме главного параметра, на корпусе элементов отмечается допустимое отклонение реальной ёмкости от указанной и напряжение, на которое рассчитано устройство. При его превышении прибор может выйти из строя.

Этих знаний тебе будет вполне достаточно для начала и для того чтобы самостоятельно продолжить изучение конденсаторов и их физических свойств в специальной технической литературе. Желаю успеха и настойчивости!

Конденсаторы, свойства конденсатора, обозначение конденсаторов на схемах, основные параметры

Конденсатор

Что такое конденсатор? Конденсатор это система из двух и более электродов (обычно в форме пластин, называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок конденсатора. Такая система обладает взаимной ёмкостью и способна сохранять электрический заряд.ТОесть из рисунка видно что это две параллельные металические пластины разделённые каким то материалом (диэлектриком- это вещество которое не проводит электрический ток)

Немного из истоиии изобретения конденсатора

В 1745 году в Лейдене немецкий физик Эвальд Юрген фон Клейст и голландский физик Питер ван Мушенбрук создали первый конденсатор – .

Лейденская банка – первый электрический конденсатор, изобретённый голландскими учёными Мушенбреком и его учеником Кюнеусом в 1745 в Лейдене. Параллельно и независимо от них сходный аппарат, под названием изобрёл немецкий учёный Клейст. Лейденская банка представляла собой закупоренную наполненную водой стеклянную банку, оклеенную внутри и снаружи фольгой. Сквозь крышку в банку был воткнут металлический стержень. Лейденская банка позволяла накапливать и хранить сравнительно большие заряды, порядка микрокулона. Изобретение лейденской банки стимулировало изучение электричества, в частности скорости его распространения и электропроводящих свойств некоторых материалов. Выяснилось, что металлы и вода лучшие проводники электричества. Благодаря Лейденской банке удалось впервые искусственным путем получить электрическую искру.

Свойства конденсатора

Конденсатор в цепи постоянного тока не проводит ток, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора. В терминах метода комплексных амплитуд конденсатор обладает комплексным импедансом

При изменении частоты изменяются диэлектрическая проницаемость диэлектрика и степень влияния паразитных параметров – собственной индуктивности и сопротивления потерь. На высоких частотах любой конденсатор можно рассматривать как последовательный колебательный контур, образуемый ёмкостью , собственной индуктивностью и сопротивлением потерь . Резонансная частота конденсатора равна:

Обозначение конденсаторов на схемах

На электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах или пикофарадах (1 мкФ = 106 пФ). При ёмкости не более 0,01 мкФ, ёмкость конденсатора указывают в пикофарадах, при этом допустимо не указывать единицу измерения, т.е. постфикс опускают. При обозначении номинала ёмкости в других единицах указывают единицу измерения (пикоФарад). Для электролитических конденсаторов, а также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их максимальное рабочее напряжение в вольтах(В) или киловольтах(кВ). Например так: . Для переменных конденсаторов указывают диапазон изменения ёмкости, например так: .

Характеристики конденсаторов

Основные параметры конденсаторов

Ёмкость конденсаторов

Основной характеристикой конденсатора является его электрическая ёмкость (точнее номинальная ёмкость), которая определяет его заряд в зависимости от напряжения на обкладках (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до сотен микрофарад. Однако существуют конденсаторы с ёмкостью до десятков фарад.

Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

Если у всех параллельно соединённых конденсаторов расстояние между обкладками и свойства диэлектрика одинаковы, то эти конденсаторы можно представить как один большой конденсатор, разделённый на фрагменты меньшй площади. При последовательном соединении конденсаторов заряды всех конденсаторов одинаковы. Общая ёмкость батареи последовательно соединённых конденсаторов равна

Эта ёмкость всегда меньше минимальной ёмкости конденсатора, входящего в батарею. Однако при последовательном соединении уменьшается возможность пробоя конденсаторов, так как на каждый конденсатор приходится лишь часть разницы потенциалов источника напряжения. Если площадь обкладок всех конденсаторов, соединённых последовательно, одинакова, то эти конденсаторы можно представить в виде одного большого конденсатора, между обкладками которого находится стопка из пластин диэлектрика всех составляющих его конденсаторов.

Удельная ёмкость конденсаторов

Конденсаторы также характеризуются удельной ёмкостью – отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.

Номинальное напряжение конденсаторов

Другой, не менее важной характеристикой конденсаторов является номинальное напряжение – значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах. Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается.

Номинальное напряжение конденсаторов

Другой, не менее важной характеристикой конденсаторов является номинальное напряжение – значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах. Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается.

Полярность конденсаторов

Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса. Взрывы электролитических конденсаторов – довольно распространённое явление. Основной причиной взрывов является перегрев конденсатора, вызываемый в большинстве случаев утечкой или повышением эквивалентного последовательного сопротивления вследствие старения (актуально для импульсных устройств). Для уменьшения повреждений других деталей и травматизма персонала в современных конденсаторах большой ёмкости устанавливают клапан или выполняют насечку на корпусе (часто можно заметить её в форме буквы X, K или Т на торце). При повышении внутреннего давления открывается клапан или корпус разрушается по насечке, испарившийся электролит выходит в виде едкого газа, и давление спадает без взрыва и осколков.

Паразитные параметры конденсаторов

Реальные конденсаторы, помимо ёмкости, обладают также собственными сопротивлением и индуктивностью. С высокой степенью точности, эквивалентную схему реального конденсатора можно представить следующим образом:

Электрическое сопротивление изоляции конденсатора – r

Эквивалентное последовательное сопротивление – R

Эквивалентное последовательное сопротивление (ЭПС, англ. ESR) обусловлено главным образом электрическим сопротивлением материала обкладок и выводов конденсатора и контакта(-ов) между ними, а также потерями в диэлектрике. Обычно ЭПС возрастает с увеличением частоты тока, протекающего через конденсатор. В большинстве случаев этим параметром можно пренебречь, но иногда (напр., в случае использования электролитических конденсаторов в фильтрах импульсных блоков питания) достаточно малое его значение может быть жизненно важным для надёжности устройства (см., напр., Capacitor plague(англ.)).

Эквивалентная последовательная индуктивность – L

Тангенс угла потерь

Температурный коэффициент ёмкости (ТКЕ) конденсаторов

где ?T – увеличение температуры в °C или °К относительно нормальных условий, при которых специфицировано значение ёмкости. TKE применяется для характеристики конденсаторов со значительной линейной зависимостью ёмкости от температуры. Однако ТКЕ определяется не для всех типов конденсаторов. Для характеристики конденсаторов с выраженной нелинейной зависимостью обычно указывают предельные величины отклонений от номинала в рабочем диапазоне температур.

Диэлектрическое поглощение конденсаторов

Если заряженный конденсатор быстро разрядить до нулевого напряжения путём подключения низкоомной нагрузки, а затем снять нагрузку и наблюдать за напряжением на выводах конденсатора, то мы увидим, что напряжение медленно повышается. Это явление получило название диэлектрическое поглощение или адсорбция электрического заряда. Конденсатор ведёт себя так, словно параллельно ему подключено множество последовательных RC-цепочек с различной постоянной времени. Интенсивность проявления этого эффекта зависит в основном от свойств диэлектрика конденсатора. Наименьшим диэлектрическим поглощением обладают конденсаторы с тефлоновым (фторопластовым) диэлектриком. Подобный эффект можно наблюдать и на большинстве электролитических конденсаторов, но в них он является следствием химических реакций между электролитом и обкладками.

Классификация конденсаторов(типы конденсаторов)

  • Конденсаторы вакуумные (обкладки без диэлектрика находятся в вакууме).
  • Конденсаторы с газообразным диэлектриком.
  • Конденсаторы с жидким диэлектриком.
  • Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.
  • Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные – бумажноплёночные, тонкослойные из органических синтетических плёнок.
  • Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего своей огромной удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металле, являющийся анодом. Вторая обкладка (катод) – это или электролит (в электролитических конденсаторах) или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги.
    Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:
  • Постоянные конденсаторы – основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
  • Переменные конденсаторы – конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термоконденсаторы). Применяются, например, в радиоприемниках для перестройки частоты резонансного контура.
  • Подстроечные конденсаторы – конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.
  • Подстроечные конденсаторы – конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.
  • зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространенные низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляюшие, дозиметрические, пусковые и другие конденсаторы.

    Краткое обозначение!Типы конденсаторов:
    БМ – бумажный малогабаритный
    БМТ – бумажный малогабаритный теплостойкий
    КД – керамический дисковый
    КЛС – керамический литой секционный
    КМ – керамический монолитный
    КПК-М – подстроечный керамический малогабаритный
    КСО – слюдянной опресованный
    КТ – керамический трубчатый
    МБГ – металлобумажный герметизированный
    МБГО – металлобумажный герметизированный однослойный
    МБГТ – металлобумажный герметизированный теплостойкий
    МБГЧ – металлобумажный герметизированный однослойный
    МБМ – металлобумажный малогабаритный
    ПМ – полистироловый малогабаритный
    ПО – пленочный открытый
    ПСО – пленочный стирофлексный открытый

    Кратные и дольные единицы ёмкости в системе Си

    Таблица кодов ёмкостей в пико, микро и нано Фарадах

    Что такое конденсатор и как он используется

    Приветствую, друзья!

    Мы уже рассматривали, как устроены «кирпичики», из которых собран компьютер.

    Вы уже знаете, как устроены и как работают полупроводниковые диоды, полевые и биполярные транзисторы.

    Вы уже знакомы с таким понятием, как SMD компоненты.

    Давайте познакомимся с еще одной интереснейшей штуковиной — конденсатором.

    Из всего многообразия конденсаторов мы рассмотрим лишь те, которые используются в компьютерах и периферийных устройствах.

    Что такое конденсатор?

    Конденсатор — это деталь с двумя выводами (двухполюсник), позволяющая накапливать энергию.

    Конденсатор характеризуется такой величиной, как ёмкость.

    Чем больше ёмкость конденсатора, тем больше энергии он может накопить и тем (грубо говоря) больше его габариты.

    Конденсатор может не только накапливать энергию, но и отдавать ее.

    Именно в таком режиме он чаще всего и работает.

    Конденсатор, в отличие от транзистора, является пассивным компонентом, т.е. есть он не может генерировать или усиливать сигнал.

    Как устроен конденсатор?

    В простейшем случае конденсатор состоит из двух металлических пластин (обкладок) и диэлектрика (изолятора) между ними. Чем больше размер пластин и чем меньше зазор между ними, тем больше емкость конденсатора.

    Вообще говоря, конденсатор накапливает на обкладках заряд (множество элементарных частиц, каждая из которых обладает элементарным зарядом). Чем больший заряд накоплен, тем большая запасена энергия. Ёмкость конденсатора зависит также и от вида диэлектрика.

    Две пластины, разделенные тонким воздушным слоем (воздух — тоже диэлектрик), обладают очень небольшой емкостью, и в таком виде конденсаторы не используются.

    С помощью специальных материалов и технологических ухищрений научились достаточно большую ёмкость втискивать в очень небольшой объём.

    Самый характерный пример — электролитические конденсаторы.

    В них две металлические обкладки в виде длинных полос (чаще всего из алюминиевой фольги) разделены слоем бумаги, пропитанной электролитом.

    Электролит вызывает образование тонкой пленки оксида (окисла), которая является хорошим диэлектриком.

    Поэтому электролитические конденсаторы называют ещё оксидными. Полосы сворачивают и помещают в цилиндрический алюминиевый корпус.

    Раньше выводы конденсаторов делали из меди – как из материала с высокой электропроводностью. Теперь же их нередко делают из более дешевых сплавов на основе железа. В этом можно убедиться, если поднести к ним магнит. Фирмачи научились экономить!

    В керамических конденсаторах диэлектриком служит пластинка из керамики, а обкладками – напыленные на керамику пленки металлических сплавов.

    В каких единицах измеряется емкость конденсатора?

    Основная единица для измерения ёмкости – Фарад (Ф, старое название – Фарада).

    Но это очень большая величина, поэтому на практике используются её производные — пикофарад (пФ, пикофарада), нанофарад (нФ, нанофарада), микрофарад (мкФ, микрофарада).

    Один микрофарад = 1 000 нанофарад = 1 000 000 пикофарад.

    В компьютерных блоках питания и в материнских платах используются электролитические конденсаторы ёмкостью несколько сотен или тысяч микрофарад.

    Там же применяется малогабаритные керамические конденсаторы ёмкостью несколько сотен или тысяч пикофарад.

    Керамические конденсаторы используются чаще всего в виде SMD компонентов.

    Как обозначаются конденсаторы в электрических схемах?

    Конденсаторы в электрических схемах обозначается в виде двух вертикальных черточек, разделенных небольшим пространством. Графическое изображение напоминает те самые две пластины, разделенные воздушным диэлектриком.

    У электролитических конденсаторов возле одной из черточек (обкладок) помещается знак «+».

    Это потому, что электролитические конденсаторы обычно имеют полярность, которую надо соблюдать при монтаже.

    Отметим, что в некоторых случаях применяются электролитические неполярные конденсаторы.

    Рядом наносится значение ёмкости конденсатора.

    А если конденсатор электролитический — то и величина его рабочего напряжения.

    Записи вида 1000 p (1000 pF) и 3,9 n (3,9 nF) означают соответственно 1000 пикофарад и 3,9 нанофарад (или 3900 пикофарад).

    Запись вида 1000uFx16V означает емкость 1000 микрофарад и рабочее напряжение 16 Вольт.

    Напротив отрицательного электрода на корпусе конденсатора наносится соответствующая маркировка (знак «-»).

    Где и как используются конденсаторы?

    Перед тем как начать рассказывать об области применения конденсаторов, вспомним, что конденсатор это — две пластины, разделенные диэлектриком. Поэтому ток через конденсатор (в первом приближении) идти не может. Однако в цепи с конденсатором могут происходить процессы заряд и разряда. И во время этих процессов в цепи будут протекать токи заряда или разряда.

    Таким образом, если переменное напряжение будет приложено к цепи с конденсатором, в ней будет протекать переменный ток. Поэтому конденсатор можно охарактеризовать такой величиной как емкостное сопротивление (обозначается в технической литературе как Хс).

    Емкостное сопротивление зависит от ёмкости конденсатора и частоты приложенного напряжения. Чем ёмкость и частота больше, тем меньше емкостное сопротивление. На этих эффектах основано применение конденсаторов в схемах фильтрации источников питания.

    В компьютерных блоках питания для получения постоянных напряжений +3,3, +5, и +12 В используется двухполупериодная схема выпрямление с двумя диодами и фильтрующим конденсатором. Без конденсатора на нагрузке будет пульсирующее напряжение одной полярности.

    Источник постоянного напряжения можно представить в виде эквивалентной схемы из генератора и двух сопротивлений, где R1 — это внутреннее сопротивление выпрямителя, а R2 — емкостное сопротивление конденсатора.

    Генератор – это сумма постоянного и переменного напряжений (пульсирующее напряжение содержит в себе постоянную и переменную составляющую).

    Таким образом, сигнал с генератора подается на частотно-зависимый делитель напряжения. Выходной сигнал снимается с нижнего плеча (конденсатора). Для постоянного напряжения сопротивление конденсатора очень велико, гораздо больше сопротивления выпрямителя. Поэтому уменьшения постоянного напряжения не происходит.

    Для переменного напряжения сопротивления конденсатора очень мало, гораздо меньше сопротивления выпрямителя, поэтому происходит сильное ослабление переменной составляющей.

    В реальной схеме ситуация несколько сложнее, так как к нижнему плечу делителя подключена нагрузка, обладающая сопротивлением. Поэтому полностью избавиться от пульсаций нельзя, можно только свести их к какому-то небольшому значению.

    Вообще, такая комбинация активного сопротивления и конденсатора называется фильтром нижних частот, который пропускает постоянную составляющую и какой-то диапазон низких частот.

    Чем выше частота входного переменного напряжения, тем сильнее оно ослабляется.

    Так как необходимо сильное подавление пульсаций переменного напряжения, то используется электролитические конденсаторы большой емкости.

    Назначение керамических SMD конденсаторов на материнской плате — подавлять высокочастотные помехи, возникающие при переключении транзисторов в микросхемах. Таким образом, электролитические конденсаторы фильтруют относительно низкочастотные помехи и пульсации, а керамические — более высокочастотные.

    Приведем еще один пример разделения переменной и постоянной составляющей. Пусть в схеме на рисунке сигнал в точке А будет иметь постоянную составляющую 5 В и переменную амплитудой 2 В.

    После конденсатора, в точке В будет уже только переменная составляющая той же амплитудой 2 В (если емкостное сопротивление конденсатора мало для такой частоты). Интересно, не правда ли?

    По существу, это тоже частотно-зависимый делитель напряжения, где в виде нижнего плеча выступает сопротивление нагрузки. Такую комбинацию называют фильтром верхних частот, который не пропускает постоянную составляющие и низкие частоты, так как в емкостное сопротивление будет для них большим.

    Заканчивая, отметим маленькую деталь: так как максимальное напряжение на конденсаторе будет равно сумме постоянной и переменной составляющей, его рабочее напряжение должно быть не менее этой величины.

  • Понравилась статья? Поделиться с друзьями:
    Добавить комментарий