Что представляет из себя электрическая цепь

Электрическая цепь и ее элементы

В электрической цепи должен быть источник движения электрически заряженных частиц, которое и называется электрическим током. Иными словами, электрический ток должен иметь своего возбудителя. Такой возбудитель тока, именуемый источником (генератором), является составным элементом электрической цепи.

Электрический ток может вызывать различные по характеру эффекты — так, он заставляет светиться лампочки накаливания, приводит в действие нагревательные приборы и электродвигатели. Все эти приборы и устройства принято называть приемниками электрического тока. Так как через них протекает ток, т. е. они включены в электрическую цепь, то приемники также являются элементами цепи.

Протекание тока требует, чтобы между источником и приемником существовала связь, которая и реализуется при помощи электрических проводов, представляющих со­ бой третий важный составной элемент электрической цепи.

Электрическая цепь – совокупность устройств, предназначенных для прохождения электрического тока. Цепь образуется источниками энергии (генераторами), потребителями энергии (нагрузками), системами передачи энергии (проводами).

Электрическая цепь – совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятии об электродвижущей силе, токе и напряжении.

Простейшая электрическая установка состоит из источника (гальванического элемента, аккумулятора, генератора и т. п.), потребителей или приемников электрической энергии (ламп накаливания, электронагревательных приборов, электродвигателей и т. п.) и соединительных проводов, соединяющих зажимы источника напряжения с зажимами потребителя. Т.е. электрическая цепь – совокупность соединенных между собой источников электрической энергии, приемников и соединяющих их проводов (линия передачи).

Электрическая цепь делится на внутреннюю и внешнюю части. К внутренней части электрической цепи относится сам источник электрической энергии. Во внешнюю часть цепи входят соединительные провода, потребители, рубильники, выключатели, электроизмерительные приборы, т. е. все то, что присоединено к зажимам источника электрической энергии.

Электрический ток может протекать только по замкнутой электрической цепи. Разрыв цепи в любом месте вызывает прекращение электрического тока.

Под электрическими цепями постоянного тока в электротехнике подразумевают цепи, в которых ток не меняет своего направления, т. е. полярность источников ЭДС в которых постоянна.

Под электрическими цепями переменного тока имеют ввиду цепи, в которых протекает ток, который изменяется во времени (смотрите, переменный ток).

Источники питания цепи – это гальванические элементы, электрические аккумуляторы, электромеханические генераторы, термоэлектрические генераторы, фотоэлементы и др. В современной технике в качестве источников энергии применяют главным образом электрические генераторы. Все источники питания имеют внутреннее сопротивление значение которого невелико по сравнению с сопротивлением других элементов электрической цепи.

Электроприемниками постоянного тока являются электродвигатели, преобразующие электрическую энергию в механическую, нагревательные и осветительные приборы, электролизные установки и др.

В качестве вспомогательного оборудования в электрическую цепь входят аппараты для включения и отключения (например, рубильники), приборы для измерения электрических величин (например, амперметры и вольтметры), аппараты защиты (например, плавкие предохранители).

Все электроприемники характеризуются электрическими параметрами, среди которых основные – напряжение и мощность. Для нормальной работы электроприемника на его зажимах необходимо поддерживать номинальное напряжение.

Элементы электрической цепи делятся на активные и пассивные. К активным элементам электрической цепи относятся те, в которых индуцируется ЭДС (источники ЭДС, электродвигатели, аккумуляторы в процессе зарядки и т. п.). К пассивным элементам относятся электроприемники и соединительные провода.

Для условного изображения электрических цепей служат электрические схемы. На этих схемах источники, приемники, провода и все другие приборы и элементы электрической цепи обозначаются при помощи выполненных определенным образом условных знаков (графических обозначений).

Согласно ГОСТ 18311-80:

Вспомогательная цепь электротехнического изделия (устройства) – электрическая цепь различного функционального назначения, не являющаяся силовой электрической цепью электротехнического изделия (устройства).

Электрическая цепь управления – вспомогательная цепь электротехнического изделия (устройства), функциональное назначение которой состоит в приведении в действие электрооборудования и (или) отдельных электротехнических изделий или устройств или в изменении значений их параметров.

Электрическая цепь сигнализации – вспомогательная цепь электротехнического изделия (устройства), функциональное назначение которой состоит в приведении в действие сигнальных устройств.

Электрическая цепь измерения – вспомогательная цепь электротехнического изделия (устройства), функциональное назначение которой состоит в измерении и (или) регистрации значений параметров и (или) получении информации измерений электротехнического изделия (устройства) или электрооборудования.

По топологическим особенностям электрические цепи подразделяют:

на простые (одноконтурные), двухузловые и сложные (многоконтурные, многоузловые, планарные (плоскостные) и объемные);

двухполюсные, имеющие два внешних вывода (двухполюсники и многополюсные, содержащие более двух внешних выводов (четырехполюсники, многополюсники).

Источники и приемники (потребители) энергии с точки зрения теории цепей являются двухполюсниками, так как для их работы необходимо и достаточно двух полюсов, через которые они передают либо принимают энергию. Тот или иной двухполюсник называют активным, если он содержит источник, или пассивным – если он не содержит источник (соответственно, левая и правая части схемы).

Устройства, передающие энергию от источников к приемникам, являются четырехполюсниками, так как они должны обладать, по меньшей мере, четырьмя зажимами для передачи энергии от генератора к нагрузке. Простейшим устройством передачи энергии являются провода.

Активный и пассивный двухполюсники в электрической цепи

Обобщенная эквивалентная схема электрической цепи

Элементы электрической цепи, обладающие электрическим сопротивлением и называемые резисторами, характеризуются так называемой вольт-амперной характеристикой – зависимостью напряжения на зажимах элемента от тока в нем или зависимостью тока в элементе от напряжения на его зажимах.

Если сопротивление элемента постоянно при любом значении тока в нем и любом значении приложенного к нему напряжения, то вольт-амперная характеристика прямая линия и такой элемент называется линейным элементом .

В общем случае сопротивление зависит как от тока, так и от напряжения . Одна из причин этого состоит в изменении сопротивления проводника при протекании по нему тока из-за его нагрева. При повышении температуры сопротивление проводника увеличивается. Но так как во многих случаях эта зависимость незначительна, элемент считают линейным.

Электрическая цепь, электрическое сопротивление участков которой не зависит от значений и направлений токов и напряжений в цепи, называется линейной электрической цепью . Такая цепь состоит только из линейных элементов, а ее состояние описывается линейными алгебраическими уравнениями.

Если сопротивление элемента цепи существенно зависит от тока или напряжения, то вольт-амперная характеристика носит нелинейный характер, а такой элемент называется нелинейным элементом .

Электрическая цепь, электрическое сопротивление хотя бы одного из участков которой зависит от значений или от направлений токов и напряжений в этом участке цепи, называется нелинейной электрической цепью. Такая цепь содержит хотя бы один нелинейный элемент.

При описании свойств электрических цепей устанавливается связь между величинами электродвижущей силы (ЭДС), напряжений и токов в цепи с величинами сопротивлений, индуктивностей, емкостей и способом построения цепи.

При анализе электрических схем пользуются следующими топологическими параметрами схем:

  • ветвь — участок электрической цепи, вдоль которого протекает один и тот же электрический ток;
  • узел — место соединения ветвей электрической цепи. Обычно место, где соединены две ветви, называют не узлом, а соединением (или устранимым узлом), а узел соединяет не менее трех ветвей;
  • контур — последовательность ветвей электрической цепи, образующая замкнутый путь, в которой один из узлов одновременно является началом и концом пути, а остальные встречаются только один раз.

Старый учебный диафильм. Одна из 7 частей старого учебного диафильма “Электротехника с основами электроники”, выпущенного в 1973 году фабрикой учебно-наглядных пособий:

Электрические цепи для чайников: определения, элементы, обозначения

Эта статья для тех, кто только начинает изучать теорию электрических цепей. Как всегда не будем лезть в дебри формул, но попытаемся объяснить основные понятия и суть вещей, важные для понимания. Итак, добро пожаловать в мир электрических цепей!

Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм.

Электрические цепи

Электрическая цепь – это совокупность устройств, по которым течет электрический ток.

Рассмотрим самую простую электрическую цепь. Из чего она состоит? В ней есть генератор – источник тока, приемник (например, лампочка или электродвигатель), а также система передачи (провода). Чтобы цепь стала именно цепью, а не набором проводов и батареек, ее элементы должны быть соединены между собой проводниками. Ток может течь только по замкнутой цепи. Дадим еще одно определение:

Электрическая цепь – это соединенные между собой источник тока, линии передачи и приемник.

Конечно, источник, приемник и провода – самый простой вариант для элементарной электрической цепи. В реальности в разные цепи входит еще множество элементов и вспомогательного оборудования: резисторы, конденсаторы, рубильники, амперметры, вольтметры, выключатели, контактные соединения, трансформаторы и прочее.

Электрическая цепь

Кстати, о том, что такое трансформатор, читайте в отдельном материале нашего блога.

По какому фундаментальному признаку можно разделить все цепи электрического тока? По тому же, что и ток! Есть цепи постоянного тока, а есть – переменного. В цепи постоянного тока он не меняет своего направления, полярность источника постоянна. Переменный же ток периодически изменяется во времени как по направлению, так и по величине.

Сейчас переменный ток используется повсеместно. О том, что для этого сделал Никола Тесла, читайте в нашей статье.

Элементы электрических цепей

Все элементы электрических цепей можно разделить на активные и пассивные. Активные элементы цепи – это те элементы, которые индуцируют ЭДС. К ним относятся источники тока, аккумуляторы, электродвигатели. Пассивные элементы – соединительные провода и электроприемники.

Приемники и источники тока, с точки зрения топологии цепей, являются двухполюсными элементами (двухполюсниками). Для их работы необходимо два полюса, через которые они передают или принимают электрическую энергию. Устройства, по которым ток идет от источника к приемнику, являются четырехполюсниками. Чтобы передать энергию от одного двухполюсника к другому им необходимо минимум 4 контакта, соответственно для приема и передачи.

Резисторы – элементы электрической цепи, которые обладают сопротивлением. Вообще, все элементы реальных цепей, вплоть до самого маленького соединительного провода, имеют сопротивление. Однако в большинстве случаев этим можно пренебречь и при расчете считать элементы электрической цепи идеальными.

Существуют условные обозначения для изображения элементов цепи на схемах.

Кстати, подробнее про силу тока, напряжение, сопротивление и закон Ома для элементов электрической цепи читайте в отдельной статье.

Вольт-амперная характеристика – фундаментальная характеристика элементов цепи. Это зависимость напряжения на зажимах элемента от тока, который проходит через него. Если вольт-амперная характеристика представляет собой прямую линию, то говорят, что элемент линейный. Цепь, состоящая из линейных элементов – линейная электрическая цепь. Нелинейная электрическая цепь – такая цепь, сопротивление участков которой зависит от значений и направления токов.

Какие есть способы соединения элементов электрической цепи? Какой бы сложной ни была схема, элементы в ней соединены либо последовательно, либо параллельно.

При решении задач и анализе схем используют следующие понятия:

  • Ветвь – такой участок цепи, вдоль которого течет один и тот же ток;
  • Узел – соединение ветвей цепи;
  • Контур – последовательность ветвей, которая образует замкнутый путь. При этом один из узлов является как началом, так и концом пути, а другие узлы встречаются в контуре только один раз.

Чтобы понять, что есть что, взглянем на рисунок:

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Классификация электрических цепей

По назначению электрические цепи бывают:

  • Силовые электрические цепи;
  • Электрические цепи управления;
  • Электрические цепи измерения;

Силовые цепи предназначены для передачи и распределения электрической энергии. Именно силовые цепи ведут ток к потребителю.

Также цепи разделяют по силе тока в них. Например, если ток в цепи превышает 5 ампер, то цепь силовая. Когда вы щелкаете чайник, включенный в розетку, Вы замыкаете силовую электрическую цепь.

Электрические цепи управления не являются силовыми и предназначены для приведения в действие или изменения параметров работы электрических устройств и оборудования. Пример цепи управления – аппаратура контроля, управления и сигнализации.

Электрические цепи измерения предназначены для фиксации изменений параметров работы электрического оборудования.

Расчет электрических цепей

Рассчитать цепь – значит найти все токи в ней. Существуют разные методы расчета электрических цепей: законы Кирхгофа, метод контурных токов, метод узловых потенциалов и другие. Рассмотрим применение метода контурных токов на примере конкретной цепи.

Сначала выделим контуры и обозначим ток в них. Направление тока можно выбирать произвольно. В нашем случае – по часовой стрелке. Затем для каждого контура составим уравнения по 2 закону Кирхгофа. Уравнения составляются так: Ток контура умножается на сопротивление контура, к полученному выражению добавляются произведения тока других контуров и общих сопротивлений этих контуров. Для нашей схемы:

Полученная система решается с подставкой исходных данных задачи. Токи в ветвях исходной цепи находим как алгебраическую сумму контурных токов

Какую бы цепь Вам ни понадобилось рассчитать, наши специалисты всегда помогут справится с заданиями. Мы найдем все токи по правилу Кирхгофа и решим любой пример на переходные процессы в электрических цепях. Получайте удовольствие от учебы вместе с нами!

Понятие электрической цепи и ее составные части

При обустройстве новой квартиры или дома, обновлении или ремонте жилья приходится сталкиваться с элементами, предназначенными для протекания электрического тока. Важно знать, что представляет собой электрическая цепь, из чего она состоит, зачем нужна схема, и какие расчеты необходимо выполнить.

  1. Что такое электрические цепи
  2. Основные компоненты
  3. Классификация цепей
  4. Разветвленные и неразветвленные
  5. Линейные и нелинейные
  6. Обозначения элементов на схеме
  7. Трехфазные электрические цепи
  8. Законы, действующие в электрических цепях
  9. Как производится расчет электрических цепей

Что такое электрические цепи

Электрической цепью называют совокупность устройств, необходимых для прохождения по ним электрического тока

Электрическая цепь – это комплекс различных элементов, соединенных между собой. Она предназначена для протекания электрического тока, где происходят переходные процессы. Движение электронов обеспечивается наличием разности потенциалов и может быть описано при помощи таких терминов, как напряжение и сила тока.

Внутренняя цепь обеспечивается подключением напряжения, как источника питания. Остальные элементы образуют внешнюю сеть. Для движения зарядов в источнике питания поля потребуется приложение сторонней силы. Это может быть обмотка генератора, трансформатора или гальванический источник.

Чтобы такая система правильно функционировала, ее контур должен быть замкнутый, иначе ток протекать не будет. Это обязательное условие для согласованной работы всех устройств. Не всякий контур может быть электрической цепью. Например, линии заземления или защиты не являются таковыми, поскольку в обычном режиме по ним не проходит ток. Назвать их электрическими можно по принципу действия. В аварийной ситуации по ним проходит ток, а контур замыкается, уходя в грунт.

В зависимости от источника питания напряжение в цепи может быть постоянным или переменным. Батарея элементов дает постоянное напряжение, а обмотки генераторов или трансформаторов – переменное.

Основные компоненты

Инвентор электрического тока

Все составные части в цепи участвуют в одном электромагнитном процессе. Условно их разделяют на три группы.

  • Первичные источники электрической энергии и сигналов могут преобразовывать энергию неэлектромагнитной природы в электрическую. Например, гальванический элемент, аккумулятор, электромеханический генератор.
  • Вторичный тип, как на входе, так и на выходе имеет электрическую энергию. Изменяются только ее параметры – напряжение и ток, их форма, величина и частота. Примером могут быть выпрямители, инверторы, трансформаторы.
  • Потребители активной энергии преобразовывают электрический ток в освещение или тепло. Это электротермические устройства, лампы, резисторы, электродвигатели.
  • К вспомогательным компонентам относят коммутационные устройства, измерительные приборы, соединительные элементы и провод.

Основой электрической сети является схема. Это графический рисунок, который содержит условные изображения и обозначения элементов и их соединение. Они выполняются согласно ГОСТу 2.721-74 – 2.758-81

Схема простейшей линии включает в себя гальванический элемент. С помощью проводов к нему через выключатель подсоединена лампа накаливания. Для измерения силы тока и напряжения в нее включен вольтметр и амперметр.

Классификация цепей

Электроцепи классифицируют по типу сложности: простые (неразветвленные) и сложные (разветвленные). Есть разделение на цепи постоянного тока и переменного, а также синусоидального и несинусоидального. Исходя из характера элементов, они бывают линейные и нелинейные. Линии переменного тока могут быть однофазными и трехфазными.

Разветвленные и неразветвленные

Во всех элементах неразветвленной цепи течет один и тот же ток. Простейшая разветвленная линия включает в себя три ветви и два узла. В каждой ветви течет свой ток. Ветвь определяют как участок цепи, который образован последовательно соединенными элементами, заключенными между двух узлов. Узел – это точка, в которой сходятся три ветви.

Если на схеме при пересечении двух прямых поставлена точка, в этом месте есть электрическое соединение двух линий. Если узел не обозначен – цепь неразветвленная.

Линейные и нелинейные

Электрическая цепь, в которой потребители не зависят от значения напряжения и направления токов, а все компоненты линейные, называется линейной. К элементам такой цепи относятся зависимые и независимые источники токов и напряжений. В линейной сопротивление элемента не зависит от тока, например, электропечь.

В нелинейной, пассивные элементы зависят от значений направления токов и напряжения, имеют хотя бы один нелинейный элемент. Например, сопротивление лампы накаливания зависит от скачков напряжения и силы тока.

Обозначения элементов на схеме

Прежде чем приступить к монтажу оборудования необходимо изучить нормативные сопровождающие документы. Схема позволяет донести до пользователя полную характеристику изделия с помощью буквенных и графических обозначений, занесенных в единый реестр конструкторской документации.

К чертежу прилагаются дополнительные документы. Их перечень может быть указан в алфавитном порядке с цифровой сортировкой на самом чертеже, либо отдельным листом. Классифицируют десять видов схем, в электротехнике обычно используют три основные схемы.

  • Функциональная имеет минимальную детализацию. Основные функции узлов изображают прямоугольником с буквенными обозначениями.
  • Принципиальная схема подробно отображает конструкцию использованных элементов, а также их связи и контакты. Необходимые параметры могут быть отображены непосредственно на схеме или в отдельном документе. Если указана только часть установки, это однолинейная схема, когда указаны все элементы – полная.
  • В монтажной электрической схеме используют позиционные обозначения элементов, их месторасположение, способ монтажа и очередность.

Вертикальные засечки на линии проводки говорят о количестве проводников. Если их более трех, выполняют цифровое обозначение. Прерывистой линией обозначают управляющие цепи, сеть охранного, эвакуационного, аварийного освещения.

Выключатель на схеме выглядит как кружок с наклоненной вправо чертой. По виду и количеству черточек определяют параметры устройства.

Кроме основных чертежей есть схемы замещения.

Трехфазные электрические цепи

Трехфазная цепь в рабочем режиме

Среди электрических цепей распространены как однофазные, так и многофазные системы. Каждая часть многофазной цепи характеризуется одинаковым значением тока и называется фазой. Электротехника различает два понятия этого термина. Первое – непосредственная составляющая трехфазной системы. Второе – величина, изменяющаяся синусоидально.

Трехфазная цепь – это одна из многофазных систем переменного тока, где действуют синусоидальные ЭДС (электродвижущая сила) одинаковой частоты, которые сдвинуты во времени относительно друг друга на определенный фазовый угол. Она образована обмотками трехфазного генератора, тремя приемниками электроэнергии и соединительными проводами.

Такие цепи служат для обеспечения генерации электрической энергии, для ее передачи, распределения, и имеет следующие преимущества:

  • экономичность выработки и транспортировки электроэнергии в сравнении с однофазной системой;
  • простое генерирование магнитного поля, которое необходимо для работы трехфазного асинхронного электродвигателя;
  • одна и та же генераторная установка выдает два эксплуатационных напряжения – линейное и фазное.

Трехфазная схема отличается значительной уравновешенностью системы. Способы соединения фаз получили структуру «звезда» и «треугольник». Обычно «звездой» соединяются фазы генерирующих электромашин, а фазы потребителей «звездой» и «треугольником».

Законы, действующие в электрических цепях

На схемах направление токов указывают стрелками. Для расчета нужно принять направления для напряжений, токов, ЭДС. При расчетах в электротехнике используют следующие основные законы:

  1. Закон Ома для прямолинейного участка цепи, который определяет связь между электродвижущей силой, напряжением источника с протекающей в проводнике силой тока и сопротивлением самого проводника.
  2. Чтобы найти все токи и напряжения, используют правила Кирхгофа, которые действуют между токами и напряжениями любого участка электрической цепи.
  3. Закон Джоуля–Ленца дает количественную оценку теплового действия электрического тока.

В цепях постоянного тока направление действия электродвижущей силы указывают от отрицательного потенциала к положительному. За направление принимают движение положительных зарядов. При этом стрелка направлена от большего потенциала к меньшему. Напряжение всегда направлено в ту сторону, что и ток.

В синусоидальных цепях ЭДС, напряжение и ток обозначают, используя полупериод тока, при этом он не изменяет свое направление. Чтобы подчеркнуть разницу потенциалов, их обозначают знаками «+» и «–».

Как производится расчет электрических цепей

Путь вычисления делится на множество способов, которые используются на практике:

  • метод, основанный на законе Ома и правилах Кирхгофа;
  • способ определения контурных токов;
  • прием эквивалентных преобразований;
  • методика измерений сопротивлений защитных проводников;
  • расчет узловых потенциалов;
  • метод идентичного генератора, и другие.

Основа расчета простой электрической цепи по закону Ома – это определение силы тока в отдельном участке при известном сопротивлении проводников и заданном напряжении.

По условию задачи известны сопротивления подсоединенных к цепи резисторов R1, R2, R3, R4, R5, R6 (без учета сопротивления амперметра). Необходимо вычислить силу токов J1, J2…J6.

На схеме есть три последовательных участка. Причем второй и третий имеют разветвления. Сопротивления этих участков обозначим, как R1, R’, R”. Тогда общее сопротивление равно сумме сопротивлений:

R = R1 + R’ + R”, где

R’ – общее сопротивление параллельно подключенных резисторов R2, R3, R4.

R” – общее сопротивление резисторов R5 и R6.

Используя закон параллельного соединения, вычисляем сопротивления R’ и R”.

Определить силу тока в неразветвленной цепи, зная общее сопротивление при заданном напряжении, можно по следующей формуле:

Для вычисления силы тока в отдельно взятых ветвях, нужно определить напряжение на участках последовательных цепей по закону Ома:

U1 = IR1; U2 = IR’; U3 = IR”;

Зная напряжение конкретных участков, можно вычислить силу тока на отдельных ветвях:

I2 = U2/R2; I3 = U2/R3; I4 = U2/R4; I5 = U3/R5; I6 = U3/R6

Иногда необходимо узнать сопротивление участков по известным параметрам напряжения, силы токов, сопротивления других участков или сделать расчет напряжения по имеющимся данным сопротивления и силе тока.

Основная часть методик направлена на упрощение расчетов. Это достигается адаптацией систем уравнений, либо самой схемы. Расчет электрических цепей производится различными способами, в зависимости от класса их сложности.

Электрическая цепь и ее элементы

Электрическая цепь – это соединение различных электрических или электронных деталей в одно. Для объединения используются проводники, которые пропускают через себя ток. Сами элементы могут самыми разнообразными – линейными, нелинейными, пассивными или активными. Любая электрическая цепь имеет в себе питание, включатель, провода, потребители тока. Она также должна быть замкнутой, иначе ток не сможет по ней протекать. Не являются электрической цепью заземляющие и зануляющие контуры.

В статье будет описано строение как сложных, так и простейших электрических цепей, как их грамотно создать, а главное обеспечить ее безопасность. В качестве дополнения, статья имеет в себе несколько видеороликов и интересный научный материал по теме.

Основы электрических цепей

Как вода течет по водопроводу (по трубам, через краны, фильтры, счетчики и т.д.), так же электричество течет по цепи (проводам, электрическим и электронным компонентам, через штекера и гнезда и т.д.). Электричество является одной из нескольких видов энергии, которая при своем течении может высвобождать свет, тепло, звук, радиоволны, механические движения, электромагнитные поля и т.д. Взять любую электротехнику (компьютер, мобильный телефон, электропечь, телевизор и т.д.), вся она содержит в себе электрические схемы, состоящие из различных электрических цепей, по которым течет ток, и на которых присутствует напряжение определенной величины и полярности.

Давайте более подробно разберем, что же собой представляет электрическая цепь, как именно по ней бежит ток. Итак, электрический ток — это упорядоченное движение электрических заряженных частиц. Напомню, что в твердых телах носителями электрического заряда являются электроны (частицы имеющие отрицательный заряд, он же минус). В жидкостях и газах носителями электрического заряда являются ионы (атомы и молекулы, у которых имеется недостаток электронов на своих орбитах, и имеющие положительный заряд, он же плюс). Чаще всего приходится иметь дело именно с движением электронов по электрической цепи именно в твердотельных проводниках (это металлы, кристаллы).

Электрическая цепь это некий замкнутый путь, по которому течет ток, бегут электрически заряженные частицы. Само перемещение этих частиц можно представить следующим образом. Как вам должно быть известно из уроков по физике все вещества состоят из атомов и молекул (мельчайшая частица самого вещества, его структурная составляющая). В твердых состояниях вещества атомы выстроены в определенном порядке, имеют так называемую кристаллическую решетку. У некоторых веществ электроны, что наиболее удалены от центра атома, могут легко отрываться от своего атома и переходить к соседнему. Так получается движение заряженных частиц внутри самого вещества.

Такие вещества являются проводниками электрического тока. Одни это делают хорошо, другие хуже (проводят ток). Если же взять такое вещество как медь (металл), который достаточно хорошо проводит через себя электричество и сделать из нее проволоку, то в итоге мы получим проводник электрического тока определенной длины.

Чтобы пошел ток нужен как бы мостик, соединяющий эти самые противоположные полюса. В роли этого моста, для перехода электрического заряда с одного полюса на другой, и будет выступать замкнутая электрическая цепь, состоящая из различных проводников.

Электрическая цепь представляет собой совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электродвижущей силе, токе и напряжении. В электрической цепи постоянного тока могут действовать как постоянные токи, так и токи, направление которых остается постоянным, а значение изменяется произвольно во времени или по какому-либо закону.

К примеру, мы просто обычной медной проволокой соединим полюса источника питания. В итоге через проволоку потечет ток (тот самый переизбыток электрических зарядов). Это будет, пожалуй, самой простой электрической цепью, которая может только создавать короткое замыкание этого самого источника питания. Но все же это электрическая цепь. Более полезной электроцепью будет такая схема — источник питания (обычная батарейка), провода, переключатель и лампочка (рассчитанная на напряжение источника питания). Когда мы все это соединим друг за другом (последовательно) мы уже получим электрическую цепь, где течение тока будет приносить пользу в виде излучения света электрической лампочкой.

Естественно, подобными простыми электрическими цепями электротехника не ограничивается. Если правильно подключать различные электрические и электронные компоненты между собой, подсоединяя к ним источник питания, создавая различные функциональные схемы, можно в итоге получать все то разнообразие электроустройств, которое мы сейчас имеем. И все они имеют различные по сложности электрические цепи.

Электроцепи и их элементы

Электрическая цепь представляет собой совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электродвижущей силе, токе и напряжении. В электрической цепи постоянного тока могут действовать как постоянные токи, так и токи, направление которых остается постоянным, а значение изменяется произвольно во времени или по какому-либо закону. Электрическая цепь состоит из отдельных устройств или элементов, которые по их назначению можно разделить на 3 группы.

Простейшая электрическая цепь

Что такое электрическая цепь?

Под электрической цепью понимают совокупность взаимосвязанных элементов, образующих путь для протекания электрического тока. Все процессы в электрической цепи подчинятся законам электротехники. Входящие в состав электрической цепи элементы можно условно разделить на 3 группы: генерирующие устройства, приемные устройства и вспомогательные элементы.

Простейшая электрическая цепь включает в себя следующие основные компоненты (рисунок 1):

  1. Источник электрической энергии (Источник тока).
  2. Приемник электрической энергии.
  3. Соединительные провода.

Также в состав простейшей электрической цепи может входить вспомогательное оборудование, например, замыкающее устройство, измерительные приборы (амперметр, вольтметр и пр.), защитные аппараты (предохранители и пр.).

Рис.1 Простейшая электрическая цепь

Источник электрической энергии, потребители, соединительные провода.

Источник электрической энергии — это устройство преобразующее различные виды энергии в электрическую энергию.

Источником электрической энергии может быть гальванический элемент, аккумулятор, электромеханический или термоэлектрический генератор, фотоэлемент и пр. Все источники электрического тока имеют внутренне сопротивление, но как правило оно мало по сравнению с сопротивлением других элементов цепи. Протекающий в цепи ток может быть как переменным, так и постоянным; его род определяется источником (например, гальванический элемент дает постоянное напряжение, обмотки трансформаторов и генераторов – переменное).

В зависимости от рода тока электрической цепи подразделяют:

  • цепи постоянного тока;
  • цепи переменного тока.

Потребителями в электрической цепи являются элементы, преобразующие электрическую энергию в механическую энергию, тепло, световое излучение и пр.

Примерами потребителей электроэнергии являются лампы накаливания, электронагревательные приборы, электродвигатели и другие элементы, требующие для работы потребление электрического тока.

Соединяющие элементы провода как правило выполняются из алюминия или меди. Это связано с низким удельным сопротивлением этих металлов – это значит, что потери напряжения в них будут незначительным. К недостаткам медных и алюминиевых проводов относят их существенное нагревание при превышении установленных предельных (максимально допустимых) значений тока и напряжения.

В состав любого электротехнического устройства (телефона, компьютера, телевизора и пр.) входят электрические цепи по которым, при наличии источника, может протекать электрический ток. В зависимости от элементов используемых в электрической цепи, можно подразделить на:

  • линейные или нелинейные цепи;
  • пассивные или активные цепи.

Для удобства расчетов и наглядного представления электрических цепей используют электрические схемы. На них все элементы электрической цепи отображены при помощи условных знаков (графических обозначений). Каждый электрический элемент имеет графическое представление, регламентированное ГОСТом, поэтому составленная одним человеком схема, может быть понятна и корректно интерпретирована другим. Иногда представление на электрической схеме одного реального элемента, может быть выполнено совокупностью нескольких стандартных элементов. Схема электрической цепи, представленной на рисунке 1, приведена на рисунке 2.

Рис.2 Схема простейшей электрической цепи

Протекание электрического тока возможно только в замкнутой электрической цепи.

Основными параметрами работы любого элемента, а также всей электроцепи в целом, являются значения тока, мощности и напряжения. Они определяют так называемый режим работы устройства. Для большинства электрических цепей значения тока и напряжения могут непрерывно меняться в широком диапазоне, следовательно режимов работы может быть бесконечное множество.

Электрическая цепь

Электрическая цепь – набор разнородных элементов, соединенных проводниками, предназначенный для протекания тока. Ассортимент составляющих широкий. Элементы выпускают линейные, нелинейные, активные, пассивные. Классификация бессильна охватить возможные случаи.

Состав электрической цепи

Электрическая цепь включает (в общем случае): источник питания, рубильник (выключатель), соединительные провода, потребителей. Обязательно сформируйте замкнутый контур. В противном случае по цепи не сможет течь ток. Электрическими не принято называть контуры заземления, зануления. Однако по сути считаются таковыми, иногда здесь течет ток. Замыкание контура при заземлении, занулении обеспечивается посредством грунта.

Источники питания. Внутренняя, внешняя электрическая цепь

Для образования упорядоченного движения носителей заряда, формирующего ток, потрудитесь создать разность потенциалов на концах участка. Достигается подключением источника питания, который в физике принято называть внутренней электрической цепью. В противовес прочим элементам, составляющим внешнюю. В источнике питания заряды движутся против направления поля. Достигается приложением сторонних сил:

  1. Обмотка генератора.
  2. Гальванический источник питания (батарейка).
  3. Выход трансформатора.

Напряжение, формируемое на концах участка электрической цепи, бывает переменным, постоянным. Сообразно в технике принято контуры делить соответствующим образом. Электрическая цепь предназначена для протекания постоянного, переменного тока. Упрощенное понимание, закон изменения упорядоченного движения носителей заряда воспринимается сложным. С трудом понимаем, переменный в цепи ток или постоянный.

Помимо упорядоченного движения носители характеризуются хаотичным тепловым движением. Скорость (интенсивность) определена температурой, родом материала, некоторыми другими факторами. В образовании электрического тока вид движения участия фактически не принимает.

Род тока определен источником, характером внешней электрической цепи. Гальванический элемент дает постоянное напряжение, обмотки (трансформаторы, генераторы) – переменное. Связано с протекающими в источнике питания процессами.

Сторонние силы, обеспечивающие движения зарядов, называют электродвижущими. Численно ЭДС характеризуется работой, совершаемой генератором для перемещения единичного заряда. Измеряется вольтами. На практике для расчета цепей удобно делить источники питания двумя классами:

  1. Источники напряжения (ЭДС).
  2. Источники тока.

В действительности неизвестны, имитацию пытаются создать практики. В розетке ожидаем увидеть 230 вольт (220 вольт по старым нормативам). Причем ГОСТ 13109 однозначно устанавливает пределы отклонения параметров от нормы. В быту пользуемся источником напряжения. Параметр нормируется. Величина тока не играет значения. Напряжение подстанции круглые сутки стремятся сделать постоянным вне зависимости от текущего запроса потребителей.

В противовес источник тока поддерживает заданный закон упорядоченного движения носителей заряда. Значение напряжения роли не играет. Ярким примером подобного рода устройств выступает сварочный аппарат на базе инвертора. Каждый знает: диаметр электрода прочно связан с толщиной металла, прочими факторами. Чтобы процесс сварки шел правильно, приходится с высокой степенью постоянства поддерживать ток. Задачу решает электронный блок на основе инвертора.

Ток, напряжение бывают постоянными, переменными. Закон изменения параметра роли не играет. Неважно, подключать ли электрическую цепь к источнику постоянного, переменного напряжения. Однако важно выдержать правильный размер параметра. К примеру, действующее значение ЭДС.

Выключатель

Рубильник позволит присоединить источник питания к проводам, потребителю. Каждый (за редким исключением) пользовался настенным выключателем. При замыкании-размыкании электрической цепи возникает искра. Объясняется наличием сопротивления емкостного типа. Для предотвращения искрения цепь дополняется дросселем, рубильник сформирован контакторами специального типа. Придуманы прочие технические решения, к примеру, катушка Тесла.

Провода

В технике провода изготавливают медные, алюминиевые. Связано с низким удельным сопротивлением металлов. Цена невысока. Выделяющееся на проводниках тепло определяется двумя параметрами:

  • Сопротивление участка цепи.
  • Электрический ток.

Понятно, второй параметр определяется нуждами потребителей. Поставщик стремится влиять на первый. Удельное сопротивление проводника предвидится по возможности низким. Ученых давно интересует явление сверхпроводимости. Металлы при понижении температуры теряют сопротивление. Уменьшаются потери. Среди полупроводников встречаются образцы с положительным и отрицательным температурным коэффициентом сопротивления. Абсолютное значение параметра металлов на порядки ниже.

Проблема с алюминием, медью проста: при протекании электрического тока в цепи температура растет. Повышается сопротивление участка, дополнительно усугубляя ситуацию. Получается замкнутый круг. Ученые считают: затруднение допустимо исправить, заручившись помощью явления сверхпроводимости.

Металл при некоторой низкой температуре резко, рывком снижает сопротивление, достигая нуля (выше рубежа график понижается плавно со скоростью 1/273 1/град). Проблема практического применения в том, что значения, провоцирующие скачок, низкие. Например, для свинца рубеж составляет 7,2 К. Экстремально низкая отрицательная температура по шкале Цельсия.

Ученые видят решение проблемы в открытии материалов, демонстрирующих явление сверхпроводимости при комнатных температурах. Тогда большие токи удастся передавать потребителям, избежав потерь. В электрической цепи, сформированной сверхпроводниками, заряды способны циркулировать бесконечно длительное время без внешней подпитки источником.

Новое явление обнаружил Хейке Камерлинг-Оннес в 1911 году, исследуя образцы ртути, охлаждаемой до весьма низких температур. На четырех градусах Кельвина сопротивление проволоки стало нулевым, до скачка снижалось, плавно следуя прямой. Стало ясно: обнаружено новое состояние материала. Позже явление сверхпроводимости продемонстрировано на образцах других металлов. Показано: эффект разрушается помещением подопытного вещества в сильное магнитное поле. Самой высокой пороговой температурой среди металлов похвастается технеций (11,3 К).

Явление сверхпроводимости при комнатных температурах

У искусственных материалов показатели намного выше. С 1986 года ученые исследуют разнообразные керамики. Последним подтвержденным фактом считаем сведения о наличии композитных материалов на основе окислов ртути с температурой перехода в новое состояние на границе 140 К. Дальнейшие работы по очевидным соображениям засекречены.

Потребители

Под потребителем электрической цепи понимается не относящееся к элементам, перечисленным выше. Полезной нагрузкой служат обыкновенная лампочка накала, спираль нагревательного прибора, электрический двигатель. Параметры цепи очень сильно зависят именно от потребителей. Например, обмотки трансформаторов наделены сильно выраженным индуктивным сопротивлением. Негативно сказывается на передаче энергии от источника.

Не только ток меняет направление. Иногда утверждение касается мощности. Энергия начинает циркулировать туда-сюда, направляясь к источнику питания, обратно во внешнюю цепь. Реактивная мощность бессильна выполнить полезную работу, разогревает проводники цепи, искажает форму полезного сигнала. Промышленникам, ведущим учет полного потребления, рекомендуется параллельно двигателям включать компенсирующие конденсаторы. Индуктивное сопротивление компенсируется емкостным, реактивная мощность замыкается внутри потребительского сегмента, избегая выходить наружу, не выделяя лишнее тепло на кабелях сети.

Нужно отметить важное свойство индуктивных потребителей: потребляют энергию. Электрический ток становится магнитным полем, передается далее. В двигателях колебания вектора напряженности, создаваемые обмоткой, позволят совершать валу полезную работу. Чтобы показать происходящие траты энергии, схемы дополняют источниками ЭДС (тока), направление действия которых противоположно имеющему место быть во внутренней электрической цепи.

Передачи мощности через емкостную связь сегодня не изобретено. Однако приближенно считаем подобным случаем излучение радиоволны в эфир. Простейший вибратор Герца часто представляют колебательным контуром, в котором обкладки конденсатора разведены в стороны. Шаг позволит образовываться электромагнитной волне, уносимой эфиром. Что касается передачи больших мощностей, соответствующие планы строил Никола Тесла, каждый видел на фото, стилистическом изображении башню Ворденклиф, напоминающую формой подберезовик с прямой ножкой. При помощи сети сооружений предполагалось снабжать энергией путем беспроводной связи промышленность, заводы, фабрики.

В курсе электроники преимущественно рассматриваются приемные устройства. Между клеммами антенны передача волны через эфир обозначается схематично источником переменного напряжения малой мощности. Уловленная ЭДС усиливается каскадами, включающими резонансные контуры. Электроника, как никакая другая область техники, включает неимоверное разнообразие потребителей. Упрощенно делится на два класса:

  1. Активные потребители требуют для корректной работы снабжения электрической энергией. Как правило, не могут питаться непосредственно основной сетью. Микросхемы, дискретные активные элементы: транзисторы, тиристоры. Иными словами, электронные ключи. Электродвигатели принципиально отличаются, снабжаясь питанием входной сети.
  2. Пассивные потребители не требуют внешнего питания. Однако пропускать ток могут причудливым образом. Некоторые тиристоры открываются при достижении напряжением определенного значения. Следовательно, считаются пассивными приборами, обладают нелинейной характеристикой. К этому семейству относятся диоды, пропускающие ток в одном направлении (демонстрируют вентильные свойства).

Пассивными потребителями являются всевозможные сопротивления, конденсаторы, дроссели (катушки индуктивности). При помощи элементов электрическая цепь приобретает необычные качества. Резонансные контуры конденсаторов, индуктивностей используют фильтрами волн различной частоты.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий