Что такое булева алгебра

Булева алгебра

Булевой алгеброй [1] [2] [3] называется непустое множество A с двумя бинарными операциями (аналог конъюнкции), (аналог дизъюнкции), унарной операцией (аналог отрицания) и двумя выделенными элементами: 0 (или Ложь) и 1 (или Истина) такими, что для всех a, b и c из множества A верны следующие аксиомы:

ассоциативность
коммутативность
законы поглощения
дистрибутивность
дополнительность

Первые три аксиомы означают, что (A, , ) является решёткой. Таким образом, булева алгебра может быть определена как дистрибутивная решётка, в которой выполнены две последние аксиомы. Структура, в которой выполняются все аксиомы, кроме предпоследней, называется псевдобулевой алгеброй.

Содержание

Некоторые свойства

Из аксиом видно, что наименьшим элементом является 0, наибольшим является 1, а дополнение ¬a любого элемента a однозначно определено. Для всех a и b из A верны также следующие равенства:

дополнение 0 есть 1 и наоборот
законы де Моргана
. инволютивность отрицания, закон снятия двойного отрицания.

Основные тождества

В данном разделе повторяются свойства и аксиомы, описанные выше с добавлением ещё нескольких.

Сводная таблица свойств и аксиом, описанных выше:

1 коммутативность, переместительность
2 ассоциативность, сочетательность
3.1 конъюнкция относительно дизъюнкции 3.2 дизъюнкция относительно конъюнкции 3 дистрибутивность, распределительность
4 комплементность, дополнительность (свойства отрицаний)
5 законы де Моргана
6 законы поглощения
7 Блейка-Порецкого
8 Идемпотентность
9 инволютивность отрицания, закон снятия двойного отрицания
10 свойства констант
дополнение 0 есть 1 дополнение 1 есть 0
11 Склеивание

Примеры

Принцип двойственности

В булевых алгебрах существуют двойственные утверждения, они либо одновременно верны, либо одновременно неверны. Именно, если в формуле, которая верна в некоторой булевой алгебре, поменять все конъюнкции на дизъюнкции, 0 на 1, ≤ на ≥ и наоборот, то получится формула, также истинная в этой булевой алгебре. Это следует из симметричности аксиом относительно таких замен.

Представления булевых алгебр

Можно доказать, что любая конечная булева алгебра изоморфна булевой алгебре всех подмножеств какого-то множества. Отсюда следует, что количество элементов в любой конечной булевой алгебре будет степенью двойки.

Знаменитая теорема Стоуна утверждает, что любая булева алгебра изоморфна булевой алгебре всех открыто-замкнутых множеств какого-то компактного вполне несвязного хаусдорфова топологического пространства.

Аксиоматизация

В 1933 г. американский математик Хантингтон предложил следующую аксиоматизацию для булевых алгебр:

  1. Аксиома коммутативности: x + y = y + x.
  2. Аксиома ассоциативности: (x + y) + z = x + (y + z).
  3. Уравнение Хантингтона: n(n(x) + y) + n(n(x) + n(y)) = x.

Здесь использованы обозначения Хантингтона: + означает дизъюнкцию, n — отрицание.

Герберт Роббинс поставил следующий вопрос: можно ли сократить последнюю аксиому так, как написано ниже, то есть будет ли определённая выписанными ниже аксиомами структура булевой алгеброй?

Аксиоматизация алгебры Роббинса:

  1. Аксиома коммутативности: x + y = y + x.
  2. Аксиома ассоциативности: (x + y) + z = x + (y + z).
  3. Уравнение Роббинса: n(n(x + y’) + n(x + n(y))) = x.

Этот вопрос оставался открытым с 30-х годов и был любимым вопросом Тарского и его учеников.

В 1996 г. Вильям МакКьюн, используя некоторые полученные до него результаты, дал утвердительный ответ на этот вопрос. Таким образом, любая алгебра Роббинса является булевой алгеброй.

Национальная библиотека им. Н. Э. Баумана
Bauman National Library

Персональные инструменты

  • Главная
  • Рубрикация
  • Указатель А – Я
  • Порталы
  • Произвольно
  • Журнал
  • Редакторам
    • Ссылки сюда
    • Связанные правки
    • Загрузить файл
    • Спецстраницы
    • Версия для печати
    • Постоянная ссылка
    • Сведения о странице
    • Цитировать страницу
    • Читать
    • Просмотр
    • История

Булева алгебра

Содержание

  • 1 Определение
  • 2 Происхождение
  • 3 Аксиомы
  • 4 Законы
  • 5 Правила
  • 6 Обозначение на логических схемах
  • 7 Ссылки

Определение

Булева алгебра как предметная область определяется следующими критериями:

  1. Непустое множество А.
  2. Бинарные операции Конъюнкция(ʌ) и Дизъюнкция ( v)
  3. Унарная операция отрицания (¬ или не)
  4. Логические константы Истина (1) и Ложь (0)

Происхождение

Булева алгебра названа по имени великого английского математика Джорджа Буля (1815—1864), который в 1854 г. опубликовал ставшую впоследствии знаменитой книгу «Исследование законов мышления». В начале гл. 1 он написал: «Назначение настоящего трактата — исследовать основные законы тех операций ума, посредством которых производится рассуждение; выразить их на символическом языке некоторого исчисления и на этой основе установить науку логики и построить ее метод; сделать этот метод основой общего применения математической доктрины вероятностей; и, наконец, собрать из различных элементов истины, выявленных в ходе этих изысканий, некоторые правдоподобные указания относительно природы и строения человеческого ума».

В этой книге Буль изложил большую часть новой алгебры, особенно пригодную для анализа классов и предложений (высказываний).

Другие математики и логики, в том числе Джон Венн и Эрнст Шрёдер, впоследствии значительно усовершенствовали и расширили алгебру Буля.

В 1938 г. Клод Э. Шеннон, в то время студент Массачусетсского технологического института, впоследствии известный математик и инженер Белловских телефонных лабораторий, а в настоящее время профессор Массачусетского технологического института, показал, что булеву алгебру можно прекрасно применять при синтезе переключательных электрических схем. Его статья «Символический анализ релейно-переключательных схем» представляет собой веху в развитии применений булевой алгебры.

Аксиомы

1) Булева переменная всегда равна либо нулю, либо единице

2) Инверсное значение переменной x противоположно ее прямому значению

3) Правила выполнения логического умножения (конъюнкции)

4) Правила выполнения логического сложения (дизъюнкции)

Законы

1) Ассоциативный (сочетательный) закон

Ассоциативность конъюнкции и дизъюнкции выражается следующими формулами:

На практике это означает, что можно опускать те скобки, которые определяют, в каком порядке должна выполняться конъюнкция и дизъюнкция.

2) Коммутативный (переместительный) закон Правила

С помощью законов алгебры логики можно производить равносильные преобразования логических выражений с целью их упрощения. В алгебре логики на основе принятого соглашения установлены следующие правила (приоритеты) для выполнения логических операций:

первыми выполняются операции в скобках, затем в следующем порядке:

Обозначение на логических схемах

Для обозначения логических элементов используется несколько стандартов. Наиболее распространёнными являются американский (ANSI), европейский (DIN), международный (IEC) и российский (ГОСТ). На рисунке ниже приведены обозначения логических элементов в этих стандартах.

Булева алгебра

  • История
  • Обсуждение (0)

Булевой алгеброй называется непустое множество A с двумя бинарными операциями (аналог конъюнкции), (аналог дизъюнкции), унарной операцией (аналог отрицания) и двумя выделенными элементами: 0 (или Ложь) и 1 (или Истина) такими, что для всех a, b и c из множества A верны следующие аксиомы:

ассоциативность
коммутативность
законы поглощения
дистрибутивность
дополнительность

Первые три аксиомы означают, что (A, , ) является решёткой. Таким образом, булева алгебра может быть определена как дистрибутивная решётка, в которой выполнены две последние аксиомы. Структура, в которой выполняются все аксиомы, кроме предпоследней, называется псевдобулевой алгеброй.

Содержание

  • 1 Некоторые свойства
  • 2 Основные тождества
  • 3 Примеры
  • 4 Принцип двойственности
  • 5 Представления булевых алгебр
  • 6 Аксиоматизация
  • 7 См. также

Некоторые свойства

Из аксиом видно, что наименьшим элементом является 0, наибольшим является 1, а дополнение ¬a любого элемента a однозначно определено. Для всех a и b из A верны также следующие равенства:

дополнение 0 есть 1 и наоборот
законы де Моргана
инволютивность отрицания

Основные тождества

В данном разделе повторяются свойства и аксиомы, описанные выше с добавлением еще нескольких.

Сводная таблица свойств и аксиом, описанных выше:

1 коммутативность
2 ассоциативность
3.1 конъюнкция относительно дизъюнкции 3.2 дизъюнкция относительно конъюнкции 3 дистрибутивность
4 дополнительность (свойства отрицаний)
5 законы де Моргана
6 законы поглощения
7 Блейка-Порецкого
8 Идемпотентность
9 инволютивность отрицания
10 свойства констант
дополнение 0 есть 1 дополнение 1 есть 0
11 Склеивание

Примеры

Принцип двойственности

В булевых алгебрах существуют двойственные утверждения, они либо одновременно верны, либо одновременно неверны. Именно, если в формуле, которая верна в некоторой булевой алгебре, поменять все конъюнкции на дизъюнкции, 0 на 1, ≤ на ≥ и наоборот, то получится формула, также истинная в этой булевой алгебре. Это следует из симметричности аксиом относительно таких замен.

Представления булевых алгебр

Можно доказать, что любая конечная булева алгебра изоморфна булевой алгебре всех подмножеств какого-то множества. Отсюда следует, что количество элементов в любой конечной булевой алгебре будет степенью двойки.

Знаменитая теорема Стоуна утверждает, что любая булева алгебра изоморфна булевой алгебре всех открыто-замкнутых множеств какого-то компактного вполне несвязного хаусдорфова топологического пространства.

Аксиоматизация

В 1933 г. американский математик Хантингтон предложил следующую аксиоматизацию для булевых алгебр:

  1. Аксиома коммутативности: x + y = y + x.
  2. Аксиома ассоциативности: (x + y) + z = x + (y + z).
  3. Уравнение Хантингтона: n(n(x) + y) + n(n(x) + n(y)) = x.

Здесь использованы обозначения Хантингтона: + означает дизъюнкцию, n — отрицание.

Герберт Роббинс поставил следующий вопрос: можно ли сократить последнюю аксиому так, как написано ниже, то есть будет ли определённая выписанными ниже аксиомами структура булевой алгеброй?

Аксиоматизация алгебры Роббинса:

  1. Аксиома коммутативности: x + y = y + x.
  2. Аксиома ассоциативности: (x + y) + z = x + (y + z).
  3. Уравнение Роббинса: n(n(x + y’) + n(x + n(y))) = x.

Этот вопрос оставался открытым с 30-х годов и был любимым вопросом Тарского и его учеников.

В 1996 г. Вильям МакКьюн, используя некоторые полученные до него результаты, дал утвердительный ответ на этот вопрос. Таким образом, любая алгебра Роббинса является булевой алгеброй.

Булева алгебра. Алгебра логики. Элементы математической логики

В современном мире мы все чаще используем разнообразные машины и гаджеты. И не только тогда, когда необходимо применить буквально нечеловеческую силу: переместить груз, поднять его на высоту, вырыть длинную и глубокую траншею и т. д. Автомобили сегодня собирают роботы, еду готовят мультиварки, а элементарные арифметические расчеты производят калькуляторы. Все чаще мы слышим выражение «булева алгебра». Пожалуй, пришло время разобраться в роли человека в создании роботов и умении машин решать не только математические, но и логические задачи.

Логика

В переводе с греческого логика – это упорядоченная система мышления, которая создает взаимосвязи между заданными условиями и позволяет делать умозаключения, основываясь на предпосылках и предположениях. Довольно часто мы спрашиваем друг друга: «Логично?» Полученный ответ подтверждает наши предположения либо критикует ход мысли. Но процесс не останавливается: мы продолжаем рассуждать.

Порой количество условий (вводных) настолько велико, а взаимосвязи между ними столь запутанны и сложны, что человеческий мозг не в состоянии «переварить» все сразу. Может понадобиться не один месяц (неделя, год) для понимания происходящего. Но современная жизнь не дает нам таких временных интервалов на принятие решений. И мы прибегаем к помощи компьютеров. И вот тут-то и появляется алгебра логики, со своими законами и свойствами. Загрузив все исходные данные, мы позволяем компьютеру распознать все взаимосвязи, исключить противоречия и найти удовлетворительное решение.

Математика и логика

Известнейший Готфрид Вильгельм Лейбниц сформулировал понятие «математическая логика», задачи которой были доступны для понимания только узкому кругу ученых. Особого интереса это направление не вызывало, и до середины XIX века о математической логике знали немногие.

Большой интерес в научных сообществах вызвал спор, в котором англичанин Джордж Буль заявил о своем намерении создать раздел математики, не имеющий абсолютно никакого практического применения. Как мы помним из истории, в это время активно развивалось промышленное производство, разрабатывались всевозможные вспомогательные машины и станки, т. е. все научные открытия имели практическую направленность.

Забегая вперед, скажем, что булева алгебра – самая используемая в современном мире часть математики. Так что спор свой Буль проиграл.

Джордж Буль

Сама личность автора заслуживает отдельного внимания. Даже учитывая то, что в прошлом люди взрослели раньше нас, все равно нельзя не отметить, что в 16 лет Дж. Буль преподавал в деревенской школе, а к 20 годам открыл собственную школу в Линкольне. Математик отлично владел пятью иностранными языками, а в свободное время зачитывался работами Ньютона и Лагранжа. И все это – о сыне простого рабочего!

В 1839 году Буль впервые послал свои научные работы в Кембриджский математический журнал. Ученому исполнилось 24 года. Работы Буля настолько заинтересовали членов Королевского научного общества, что в 1844 году он получил медаль за вклад в развитие математического анализа. Еще несколько опубликованных работ, в которых были описаны элементы математической логики, позволили молодому математику занять пост профессора в колледже графства Корк. Напомним, что у самого Буля образования не было.

В принципе, булева алгебра очень проста. Существуют высказывания (логические выражения), которые, с точки зрения математики, можно определить только двумя словами: «истина» или «ложь». Например, весной деревья расцветают – истина, летом идет снег – ложь. Вся прелесть этой математики заключается в том, что нет строгой необходимости использовать только числа. Для алгебры суждений вполне подходят любые высказывания с однозначным смыслом.

Таким образом, алгебра логики может быть использована буквально везде: в составлении расписаний и написании инструкций, анализе противоречивой информации о событиях и определении последовательности действий. Самое главное – понять, что совершенно неважно, как мы определили истинность или ложность высказывания. От этих «как» и «почему» нужно абстрагироваться. Значение имеет только констатация факта: истина-ложь.

Безусловно, для программирования важны функции алгебры логики, которые записываются соответствующими знаками и символами. И выучить их – это значит освоить новый иностранный язык. Нет ничего невозможного.

Основные понятия и определения

Не вдаваясь в глубины, разберемся с терминологией. Итак, булева алгебра предполагает наличие:

  • высказываний;
  • логических операций;
  • функций и законов.

Высказывания – любые утвердительные выражения, которые не могут быть истолкованы двузначно. Они записываются в виде чисел (5 > 3) или формулируются привычными словами (слон – самое большое млекопитающее). При этом фраза «у жирафа нет шеи» также имеет право на существование, только булева алгебра определит её как «ложь».

Все высказывания должны носить однозначный характер, но они могут быть элементарными и составными. Последние используют логические связки. Т. е. в алгебре суждений составные высказывания образуются сложением элементарных посредством логических операций.

Операции булевой алгебры

Мы уже помним, что операции в алгебре суждений – логические. Подобно тому, как алгебра чисел использует арифметические операции для сложения, вычитания или сравнения чисел, элементы математической логики позволяют составить сложные высказывания, дать отрицание или вычислить конечный результат.

Логические операции для формализации и простоты записываются формулами, привычными для нас в арифметике. Свойства булевой алгебры дают возможность записывать уравнения и вычислять неизвестные. Логические операции обычно записывают с помощью таблицы истинности. Её столбцы определяют элементы вычислений и операцию, которая над ними производится, а строки показывают результат вычислений.

Основные логические действия

Самыми распространенными в булевой алгебре операциями являются отрицание (НЕ) и логические И и ИЛИ. Так можно описать практически все действия в алгебре суждений. Изучим подробнее каждую из трех операций.

Отрицание (не) применяется только к одному элементу (операнду). Поэтому операцию отрицания называют унарной. Для записи понятия «не А» используют такие символы: ¬A, A¯¯¯ или !A. В табличной форме это выглядит так:

Для функции отрицания характерно такое утверждение: если А истинно, то Б – ложно. Например, Луна вращается вокруг Земли – истина; Земля вращается вокруг Луны – ложь.

Логические умножение и сложение

Логическое И называют операцией конъюнкции. Что это значит? Во-первых, что применить ее можно к двум операндам, т. е. И – бинарная операция. Во-вторых, что только в случае истинности обоих операндов (и А, и Б) истинно и само выражение. Пословица «Терпение и труд все перетрут» предполагает, что только оба фактора помогут человеку справиться со сложностями.

Для записи используются символы: A∧Б, A⋅Б или A&&Б.

Конъюнкция аналогична умножению в арифметике. Иногда так и говорят – логическое умножение. Если перемножить элементы таблицы по строкам, мы получим результат, аналогичный логическому размышлению.

Дизъюнкцией называют операцию логического ИЛИ. Она принимает значение истинности тогда, когда хотя бы одно из высказываний истинно (или А, или Б). Записывается это так: A∨Б, A+Б или A||Б. Таблицы истинности для этих операций такие:

Дизъюнкция подобна арифметическому сложению. Операция логического сложения имеет только одно ограничение: 1+1=1. Но мы же помним, что в цифровом формате математическая логика ограничена 0 и 1 (где 1 – истина, 0 – ложь). Например, утверждение «в музее можно увидеть шедевр или встретить интересного собеседника» означает, что можно посмотреть произведения искусства, а можно познакомиться с интересным человеком. В то же время, не исключен вариант одновременного свершения обоих событий.

Функции и законы

Итак, мы уже знаем, какие логические операции использует булева алгебра. Функции описывают все свойства элементов математической логики и позволяют упрощать сложные составные условия задач. Самым понятным и простым кажется свойство отказа от производных операций. Под производными понимаются исключающее ИЛИ, импликация и эквивалентность. Поскольку мы ознакомились только с основными операциями, то и свойства рассмотрим тоже только их.

Ассоциативность означает, что в высказываниях типа «и А, и Б, и В» последовательность перечисления операндов не играет роли. Формулой это запишется так:

Как видим, это свойственно не только конъюнкции, но и дизъюнкции.

Коммутативность утверждает, что результат конъюнкции или дизъюнкции не зависит от того, какой элемент рассматривался вначале:

Дистрибутивность позволяет раскрывать скобки в сложных логических выражениях. Правила схожи с раскрытием скобок при умножении и сложении в алгебре:

Свойства единицы и нуля, которые могут быть одним из операндов, также аналогичны алгебраическим умножению на ноль или единицу и сложению с единицей:

Идемпотентность говорит нам о том, что если относительно двух равных операндов результат операции оказывается аналогичным, то можно «выбросить» лишние усложняющие ход рассуждений операнды. И конъюнкция, и дизъюнкция являются идемпотентными операциями.

Поглощение также позволяет нам упрощать уравнения. Поглощение утверждает, что когда к выражению с одним операндом применяется другая операция с этим же элементом, результатом оказывается операнд из поглощающей операции.

Последовательность операций

Последовательность операций имеет немаловажное значение. Собственно, как и для алгебры, существует приоритетность функций, которые использует булева алгебра. Формулы могут упрощаться только при условии соблюдения значимости операций. Ранжируя от самых значимых до незначительных, получим такую последовательность:

3. Дизъюнкция, исключающее ИЛИ.

4. Импликация, эквивалентность.

Как видим, только отрицание и конъюнкция не имеют равных приоритетов. А приоритет дизъюнкции и исключающего ИЛИ равны, также как и приоритеты импликации и эквивалентности.

Функции импликации и эквивалентности

Как мы уже говорили, помимо основных логических операций математическая логика и теория алгоритмов использует производные. Чаще всего применяются импликация и эквивалентность.

Импликация, или логическое следование – это высказывание, в котором одно действие является условием, а другое – следствием его выполнения. Иными словами, это предложение с предлогами «если. то». «Любишь кататься, люби и саночки возить». Т. е. для катания необходимо затянуть санки на горку. Если же нет желания съехать с горы, то и санки таскать не приходится. Записывается это так: A→Б или A⇒Б.

Эквивалентность предполагает, что результирующее действие наступает только в том случае, когда истиной являются оба операнда. Например, ночь сменяется днем тогда (и только тогда), когда солнце встает из-за горизонта. На языке математической логики это утверждение записывается так: A≡Б, A⇔Б, A==Б.

Другие законы булевой алгебры

Алгебра суждений развивается, и многие заинтересовавшиеся ученые сформулировали новые законы. Наиболее известными считаются постулаты шотландского математика О. де Моргана. Он заметил и дал определение таким свойствам, как тесное отрицание, дополнение и двойное отрицание.

Тесное отрицание предполагает, что перед скобкой нет ни одного отрицания: не (А или Б)= не А или НЕ Б.

Когда операнд отрицается, независимо от своего значения, говорят о дополнении:

И, наконец, двойное отрицание само себя компенсирует. Т.е. перед операндом либо исчезает отрицание, либо остается только одно.

Как решать тесты

Математическая логика подразумевает упрощение заданных уравнений. Так же, как и в алгебре, необходимо сначала максимально облегчить условие (избавиться от сложных вводных и операций с ними), а затем приступить к поиску верного ответа.

Что же сделать для упрощения? Преобразовать все производные операции в простые. Затем раскрыть все скобки (или наоборот, вынести за скобки, чтобы сократить этот элемент). Следующим действием должно стать применение свойств булевой алгебры на практике (поглощение, свойства нуля и единицы и т. д).

В конечном итоге уравнение должно состоять из минимального количества неизвестных, объединенных простыми операциями. Легче всего искать решение, если добиться большого количества тесных отрицаний. Тогда ответ всплывет как бы сам собой.

Что такое булева алгебра

Обычная школьная алгебра работает с натуральными, целыми, рациональными и действительными числами. Таких чисел бесконечно много. А что, если взять всего лишь пару объектов и выдумать для них разные операции вроде того же сложения или умножения? Тогда мы получим новую разновидность алгебры, а при желании – много новых разновидностей, поскольку операции можно определять разными способами. Одна такая алгебра получила название “булевой” по имени ее изобретателя Дж. Буля. Операции в булевой алгебре продуманы таким образом, чтобы ее можно было использовать в логических рассуждениях.

Мы привыкли к тому, что числа применяются для обозначения количества – большего или меньшего. Но если чисел всего два, то может быть только два варианта количества. тогда это странно было бы называть “количеством”. Поэтому те два объекта, с которыми оперирует булева алгебра, числами называть некорректно. Просто два каких-то объекта. Какие именно – зависит от области применения булевой алгебры или, как говорят математики, от интерпретации.

Булева алгебра может применяться в компьютерной технике. Здесь интерпретация заключается в том, что значок означает одно напряжение между какими-нибудь контактами какой-нибудь схемы (скажем, 0 вольт), а значок – другое (скажем, +5 вольт).

Есть одна тонкость, которую люди, впервые столкнувшиеся с математической логикой, понимают с трудом. Поэтому придется сделать пространное отступление.

Что называть истиной, а что – ложью,- это вопрос, как говорится, “тонкий”. Есть разные критерии истины, о которых можно долго говорить. Математическая логика подобных разговоров избегает, как говорят “абстрагируется” от них. Предполагается, что кто-то каким-то образом выяснил, что некое утверждение истинно (), а другое – ложно (). Неважно, как он это делает, пусть хоть Афродите молится – лишь бы выяснил. Дальше уже можно применять булеву алгебру для различных операций с этими и . Результат будет получен, опять же, в виде и . Теперь тот, кто применял булеву алгебру к откровениям Афродиты, должен сам истолковать, что же будет означать для него такая “истина” и такая “ложь”.

Вот вам более привычный пример – из арифметики. В ней есть абстрактные числа, для которых заданы правила сложения, вычитания и так далее. Мы можем сложить и получить . А вот что означают эти самые , и – это уже дело того, кто применяет арифметику. Может, это 13 килограммов картошки и 12 килограммов картошки, которые свалили в одну кучу и получили 25 килограммов. А может это обогреватель с температурой в 13 градусов тепла, который нагрели еще на 12 градусов и получили в результате обогреватель с температурой 25 градусов. Это были примеры правильного применения арифметики. А что, если сложить 12 килограммов картошки и 13 градусов тепла – что получится? 25? 25 чего? Килограммов или градусов? Наверное ни то, ни другое – ведь такое применение арифметики неправильно. Или мы можем взять 12 кучек песка и еще 13 кучек песка и высыпать их все в одно место. В результате получится вовсе не 25 кучек песка, а одна большая куча. Снова неправильное применение арифметики.

Так же и с булевой алгеброй. Можно для выяснения “истины” и “лжи” долго бить в бубен или лбом об пол. Будет достигнут некий результат. который можно подставить в формулы булевой алгебры. Потом что-то получится в процессе вычислений. и это может оказаться “истиной” или “ложью” с точки зрения специалиста по битию в бубен. Если булева алгебра будет постоянно выдавать правильные ответы (как с картошкой), тогда для этой цели она будет признана пригодной. Вопрос о том, для чего пригодна булева алгебра, а для чего – не пригодна остается за рамками самой булевой алгебры.

[высказывание]: Высказывание – это фрагмент текста, для которого можно выяснить его истинность (хотя бы приблизительно).

В булевой алгебре рассматриваются только те высказывания, для которых истинность может принимать два значения: либо истина (), либо ложь (). Другие значения – нельзя. Оба значения сразу – нельзя. Ни одного значения вообще – тоже нельзя. Подобные высказывания называются булевыми высказываниями. Любые другие тексты в булевой алгебре не рассматриваются. Не то, чтобы это было запрещено уголовным кодексом, просто таковы “область применимости” этого раздела математики.

[булево высказывание]: Булево высказывание – это такое высказывание, для которого рассматриваются только два значения истинности: и .

Поскольку в булевой алгебре есть только два значения истинности, то такую логическую систему называют двузначной. Есть и другие двузначные логические системы. Есть в математике и многозначные системы, которые допускают промежуточные градации между “истиной” и “ложью”, так сказать “полутона”, которые по смыслу соответствуют таким выражениям, как “сомнительно”, “скорее всего истина”, “вряд ли” и т.п. Тут важно отметить, что причины, по которым рассматриваются только две градации истинности, также остаются за рамками булевой алгебры.

Вопросы и задания для самостоятельной работы

  1. Приведите пример (или примеры) практического применения булевой алгебры.

В компьютерной технике, в логических рассуждениях (особенно в математике).

Понравилась статья? Поделиться с друзьями:
Добавить комментарий