Что такое фаза колебаний

Фаза колебаний

Параметры гармонического колебания

Любой колебательный процесс — это изменения некоторого параметра около среднего значения. Колебания бывают периодическими (маятник) и непериодическими (флаг на ветру). Если построить график колебательного процесса, то среднее значение на нём будет представлено горизонтальной прямой, а значение колеблющегося параметра — кривой, постоянно возвращающейся к среднему. При этом для непериодического колебания возвраты будут хаотичными, а для периодического — строго через одинаковый промежуток времени. Этот промежуток называется периодом колебания $T$.

Рис. 1. Периодические и непериодические колебания.

Простейшим периодическим колебанием является колебание, которое совершается по закону круговых функций (синуса или косинуса). Оно называется гармоническим. Поскольку в высшей математике доказывается, что любое колебание (в том числе непериодическое) можно представить в виду бесконечной суммы гармонических колебаний, то в первую очередь изучаются именно они. А по определению любое гармоническое колебание можно представить в виде функции:

$$A=A_0sin Bigg ( <2piover T>t +varphi_0 Bigg ),$$

  • $A_0$ — амплитуда колебания, максимальное отклонение мгновенного значения функции от нуля;
  • $T$ — период колебаний;
  • $t$ — свободная переменная — момент времени, для которого находится мгновенное значение амплитуды;
  • $varphi_0$ — начальная фаза колебаний.

Коэффициент $<2piover T>=omega$ при свободной переменной $t$ называется угловой частотой. Его физический смысл состоит в том, что это угол, проходимый гармонической функцией за единицу времени. Значение выражения $ <2piover T>t +varphi_0=varphi$, которое является аргументом функции синуса, называется полной фазой колебания.

Рис. 2. Фаза колебания.

Фаза гармонического колебания

Из формулы гармонического колебания можно понять физический смысл фазы. Поскольку аргументом функции $sin(x)$ является угол поворота единичного вектора на координатной плоскости, выраженный в радианах, и его период равен $2pi$, то фаза — это часть периода колебания, соответствующая моменту $t$. Она еще выражается в радианах и тоже имеет период $2pi$.

Из формулы также можно видеть, что если $t=0$, то $varphi=varphi_0$ (полная фаза в начальный момент равна начальной фазе).

Разность фаз

Для одного колебательного процесса фаза не играет большой роли. В самом деле, если брать разные моменты времени за начальные, мы можем получать любое значение фазы, колебательный процесс при этом никак не изменится. Однако, когда речь идет о нескольких колебательных процессах, то значение фазы существенно возрастает. Именно фазой определяется разница мгновенных значений двух колебаний.

Рис. 3. Графики колебаний с различными фазами.

Если частоты колебаний неодинаковы, то каждый момент времени фазы будут различны, их разность также будет изменяться. Если же частоты колебаний одинаковы, то несмотря на изменение со временем фазы каждого колебания, разность фаз этих двух колебаний будет постоянной. Это может приводить к интересным ситуациям.

Например, если мы возьмем два колебания с одинаковыми амплитудами и частотами, но у первого начальная фаза будет равна нулю, а у второго — $pi$, то эти два колебания никогда не будут иметь одинаковых ненулевых значений. Более того, если эти колебания сложить, то их сумма всегда будет равна нулю. Говорят, что такие процессы происходят в противофазе.

Что мы узнали?

Фаза колебания — это часть периода колебания, соответствующая текущему моменту времени. Единица измерения фазы — радиана, она имеет период $2pi$. Особо важное значение имеет разность фаз двух и более колебаний. Если частота этих колебаний одинакова, то и разность фаз будет всегда постоянной.

КОЛЕБАНИЯ

14.1. Понятие о колебательных процессах

Колебаниями называются движения или процессы, обладающие той или иной повторяемостью во времени.

колебание величины заряда на обкладках конденсатора в колебательном контуре;

колебание грузика, закрепленного на пружине;

14.1.1. Гармонические колебания

Гармонические колебания – это такие колебания, при которых колеблющаяся величина x изменяется со временем по закону синуса, либо косинуса:

,

или

где A – амплитуда;
ω – круговая частота;
α – начальная фаза;
( ωt + α ) – фаза.

14.1.1.1. Фаза колебания

Фаза колебания – это аргумент гармонической функции: ( ωt + α ). Начальная фаза α – это значение фазы в начальный момент времени, т.е. при t = 0.

14.1.1.2. Амплитуда колебания

Амплитуда колебания A – это наибольшее значение колеблющейся величины.

14.1.1.3. Круговая или циклическая частота ω

При изменении аргумента косинуса, либо синуса на эти функции возвращаются к прежнему значению. Найдем промежуток времени T , в течение которого фаза гармонической функции изменяется на .

ω (t + T) + α = ωt + α + 2π ,

или ω T = . .

Время T одного полного колебания называется периодом колебания. Частотой ν называют величину, обратную периоду

.

Единица измерения частоты – герц (Гц), 1 Гц = 1 с -1 .

,

.

Круговая, или циклическая частоты ω в раз больше частоты колебаний ν . Круговая частота – это скорость изменения фазы со временем. Действительно:

.

14.1.1.4. График гармонического колебания

14.2 Дифференциальное уравнение гармонических колебаний

14.2.1 Колеблющиеся системы

Рассмотрим колебания в трех системах:

а) колебания заряда в колебательном контуре L,C ;

б) колебания грузика, прикрепленного к пружине;

в) колебание физического маятника – любого тела, совершающего колебания вокруг горизонтальной оси, не проходящей через его центр тяжести.

14.2.2 Колеблющиеся величины

14.2.3. Уравнения движения

Второй закон Ньютона (4.6)

Уравнение динамики вращательного движения (7.3)

14.2.4. Применим закон движения, т.е. учтем особенности наших систем:

Используя другое обозначение производной получим после несложных преобразований:

Мы получили дифференциальные уравнения, описывающие движения наших систем. В первых двух случаях уравнения одинаковы по форме, в третьем случае второй член уравнения содержит не φ , а Sin φ . Если рассматривать только малые отклонения маятника от положения равновесия, то тогда, при φ , Sin φ ≈ φ и мы имеем:

.

, , ,
, , .

14.2.5. Дифференциальное уравнение колебательного движения

Для всех трех рассмотренных случаев имеем одно и то же дифференциальное уравнение колебательного движения

.

14.2.6. Решение дифференциального уравнения

Решением дифференциального уравнения называется функция, обращающая это уравнение в тождество.

Нетрудно проверить прямой подстановкой, что в нашем случае решение имеет вид:

,

т.е. является гармонической функцией. Значит уравнение , это дифференциальное уравнение гармонических колебаний.

Фаза колебаний – кратко что это и в чем измеряется, определение, формула, единица измерения в физике

Любой колебательный процесс, который изучается физикой, имеет ряд параметров, одним из которых является фаза. Кратко рассмотрим, что это такое, каков физический смысл фазы, в чем измеряется фаза, приведем формулу фазы колебаний.

Параметры гармонического колебания

Любой колебательный процесс — это изменения некоторого параметра около среднего значения. Колебания бывают периодическими (маятник) и непериодическими (флаг на ветру). Если построить график колебательного процесса, то среднее значение на нём будет представлено горизонтальной прямой, а значение колеблющегося параметра — кривой, постоянно возвращающейся к среднему. При этом для непериодического колебания возвраты будут хаотичными, а для периодического — строго через одинаковый промежуток времени. Этот промежуток называется периодом колебания $T$.

Рис. 1. Периодические и непериодические колебания.

Простейшим периодическим колебанием является колебание, которое совершается по закону круговых функций (синуса или косинуса). Оно называется гармоническим. Поскольку в высшей математике доказывается, что любое колебание (в том числе непериодическое) можно представить в виду бесконечной суммы гармонических колебаний, то в первую очередь изучаются именно они. А по определению любое гармоническое колебание можно представить в виде функции:

$$A=A_0sin Bigg ( <2piover T>t +varphi_0 Bigg ),$$

  • $A_0$ — амплитуда колебания, максимальное отклонение мгновенного значения функции от нуля;
  • $T$ — период колебаний;
  • $t$ — свободная переменная — момент времени, для которого находится мгновенное значение амплитуды;
  • $varphi_0$ — начальная фаза колебаний.

Коэффициент $<2piover T>=omega$ при свободной переменной $t$ называется угловой частотой. Его физический смысл состоит в том, что это угол, проходимый гармонической функцией за единицу времени. Значение выражения $ <2piover T>t +varphi_0=varphi$, которое является аргументом функции синуса, называется полной фазой колебания.

Рис. 2. Фаза колебания.

Фаза гармонического колебания

Из формулы гармонического колебания можно понять физический смысл фазы. Поскольку аргументом функции $sin(x)$ является угол поворота единичного вектора на координатной плоскости, выраженный в радианах, и его период равен $2pi$, то фаза — это часть периода колебания, соответствующая моменту $t$. Она еще выражается в радианах и тоже имеет период $2pi$.

Из формулы также можно видеть, что если $t=0$, то $varphi=varphi_0$ (полная фаза в начальный момент равна начальной фазе).

Разность фаз

Для одного колебательного процесса фаза не играет большой роли. В самом деле, если брать разные моменты времени за начальные, мы можем получать любое значение фазы, колебательный процесс при этом никак не изменится. Однако, когда речь идет о нескольких колебательных процессах, то значение фазы существенно возрастает. Именно фазой определяется разница мгновенных значений двух колебаний.

Рис. 3. Графики колебаний с различными фазами.

Если частоты колебаний неодинаковы, то каждый момент времени фазы будут различны, их разность также будет изменяться. Если же частоты колебаний одинаковы, то несмотря на изменение со временем фазы каждого колебания, разность фаз этих двух колебаний будет постоянной. Это может приводить к интересным ситуациям.

Например, если мы возьмем два колебания с одинаковыми амплитудами и частотами, но у первого начальная фаза будет равна нулю, а у второго — $pi$, то эти два колебания никогда не будут иметь одинаковых ненулевых значений. Более того, если эти колебания сложить, то их сумма всегда будет равна нулю. Говорят, что такие процессы происходят в противофазе.

Что мы узнали?

Фаза колебания — это часть периода колебания, соответствующая текущему моменту времени. Единица измерения фазы — радиана, она имеет период $2pi$. Особо важное значение имеет разность фаз двух и более колебаний. Если частота этих колебаний одинакова, то и разность фаз будет всегда постоянной.

Как определить начальную фазу колебаний по графику

Параметры гармонического колебания

Любой колебательный процесс — это изменения некоторого параметра около среднего значения. Колебания бывают периодическими (маятник) и непериодическими (флаг на ветру). Если построить график колебательного процесса, то среднее значение на нём будет представлено горизонтальной прямой, а значение колеблющегося параметра — кривой, постоянно возвращающейся к среднему. При этом для непериодического колебания возвраты будут хаотичными, а для периодического — строго через одинаковый промежуток времени. Этот промежуток называется периодом колебания $T$.

Рис. 1. Периодические и непериодические колебания.

Простейшим периодическим колебанием является колебание, которое совершается по закону круговых функций (синуса или косинуса). Оно называется гармоническим. Поскольку в высшей математике доказывается, что любое колебание (в том числе непериодическое) можно представить в виду бесконечной суммы гармонических колебаний, то в первую очередь изучаются именно они. А по определению любое гармоническое колебание можно представить в виде функции:

$$A=A_0sin Bigg ( <2piover T>t +varphi_0 Bigg ),$$

  • $A_0$ — амплитуда колебания, максимальное отклонение мгновенного значения функции от нуля;
  • $T$ — период колебаний;
  • $t$ — свободная переменная — момент времени, для которого находится мгновенное значение амплитуды;
  • $varphi_0$ — начальная фаза колебаний.

Коэффициент $<2piover T>=omega$ при свободной переменной $t$ называется угловой частотой. Его физический смысл состоит в том, что это угол, проходимый гармонической функцией за единицу времени. Значение выражения $ <2piover T>t +varphi_0=varphi$, которое является аргументом функции синуса, называется полной фазой колебания.

Рис. 2. Фаза колебания.

Характеристики колебаний

Чтобы описать колебательные процессы и отличить одни колебания от других, используют 6 характеристик. Они называются так (рис. 1):

  • амплитуда,
  • период,
  • частота,
  • циклическая частота,
  • фаза,
  • начальная фаза.

Такие величины, как амплитуду и период, можно определить по графику колебаний.

Начальную фазу, так же, определяют по графику, с помощью интервала времени (large Delta t), на который относительно нуля сдвигается начало ближайшего периода.

Частоту и циклическую частоту вычисляют из найденного по графику периода, по формулам. Они находятся ниже в тексте этой статьи.

А фазу определяют с помощью формулы, в которую входит интересующий нас момент времени t колебаний. Читайте далее.

Фаза гармонического колебания

Из формулы гармонического колебания можно понять физический смысл фазы. Поскольку аргументом функции $sin(x)$ является угол поворота единичного вектора на координатной плоскости, выраженный в радианах, и его период равен $2pi$, то фаза — это часть периода колебания, соответствующая моменту $t$. Она еще выражается в радианах и тоже имеет период $2pi$.

Из формулы также можно видеть, что если $t=0$, то $varphi=varphi_0$ (полная фаза в начальный момент равна начальной фазе).

Примечания

  1. ГОСТ Р 52002-2003. Электротехника. Термины и определения основных понятий. ГОСТ даёт определение: «Фаза (синусоидального электрического) тока — аргумент синусоидального электрического тока, отсчитываемый от точки перехода значения тока через нуль к положительному значению»
  2. Хотя нет принципиальной причины не сделать противоположный выбор, что иногда и делается некоторыми авторами.
  3. Таким образом, обычно, в соответствии с этим соглашением начальная фаза колебания вида Asin⁡(ωt) считается равной −π2 (синус отстает от косинуса по фазе
    ).
  4. Хотя в части случаев с наложением условий на скорость изменения и т.п., несколько ограничивающих произвольность функции.
  5. Существуют системы, формализм действия к которым применять неудобно и даже такие, к которым он по сути неприменим, однако в современном понимании такие системы делятся на два класса: 1) не фундаментальные (то есть описываемые неточно, и мыслится, что будучи описана более точно такая система может быть — в принципе — описана через действие), 2) относящиеся к далеко не общепризнанным теоретическим построениям.

Разность фаз

Для одного колебательного процесса фаза не играет большой роли. В самом деле, если брать разные моменты времени за начальные, мы можем получать любое значение фазы, колебательный процесс при этом никак не изменится. Однако, когда речь идет о нескольких колебательных процессах, то значение фазы существенно возрастает. Именно фазой определяется разница мгновенных значений двух колебаний.

Рис. 3. Графики колебаний с различными фазами.

Если частоты колебаний неодинаковы, то каждый момент времени фазы будут различны, их разность также будет изменяться. Если же частоты колебаний одинаковы, то несмотря на изменение со временем фазы каждого колебания, разность фаз этих двух колебаний будет постоянной. Это может приводить к интересным ситуациям.

Например, если мы возьмем два колебания с одинаковыми амплитудами и частотами, но у первого начальная фаза будет равна нулю, а у второго — $pi$, то эти два колебания никогда не будут иметь одинаковых ненулевых значений. Более того, если эти колебания сложить, то их сумма всегда будет равна нулю. Говорят, что такие процессы происходят в противофазе.

Что такое фаза колебаний

Рассмотрим еще раз обыкновенные детские качели (рис. 9) и угол их отклонения от положения равновесия. С течением времени этот угол изменяется, то есть, он зависит от времени.

В процессе колебаний изменяется угол отклонения от равновесия. Этот изменяющийся угол называют фазой колебаний и обозначают (varphi).

Различия между фазой и начальной фазой

Существуют два угла отклонения от равновесия – начальный, он задается перед началом колебаний и, угол, изменяющийся во время колебаний.

Первый угол называют начальной ( varphi_) фазой (рис. 10а), она считается неизменной величиной. А второй угол – просто ( varphi) фазой (рис. 10б) – это величина переменная.

Как на графике колебаний отметить фазу

На графике колебаний фаза (large varphi) выглядит, как точка на кривой. С течением времени эта точка сдвигается (бежит) по графику слева направо (рис. 11). То есть, в разные моменты времени она будет находиться на различных участках кривой.

На рисунке отмечены две крупные красные точки, они соответствуют фазам колебаний в моменты времени t1 и t2.

А начальная фаза на графике колебаний выглядит, как место, в котором находится точка, лежащая на кривой колебаний, в момент времени t=0. На рисунке дополнительно присутствует одна мелкая красная точка, она соответствует начальной фазе колебаний.

Как определить фазу с помощью формулы

Пусть нам известны величины (large omega) — циклическая частота и (large varphi_) — начальная фаза. Во время колебаний эти величины не изменяются, то есть, являются константами.

Время колебаний t будет величиной переменной.

Фазу (large varphi), соответствующую любому интересующему нас моменту t времени, можно определить из такого уравнения:

Левая и правая части этого уравнения имеют размерность угла (т. е. измеряются в радианах, или градусах). А подставляя вместо символа t в это уравнение интересующие нас значения времени, можно получать соответствующие им значения фазы.

Значение начальной фазы колебательного процесса

Точка начальной фазы колебаний характеризует значение параметра функции в нулевой момент времени. Учитывая, что для того, чтобы система начала колебаться, она должна быть выведена из положения равновесия, начальная фаза колебаний характеризует именно это начальное отклонение, которое хорошо видно на графике функции.

Для нитяного или пружинного маятника зачастую начальная фаза колебаний также характеризует точку максимального отклонения.

Но наибольшее значение начальная фаза колебаний принимает для случая, когда происходит два и более колебательных процесса одинаковой частоты. При одинаковой частоте разность фаз колебаний в этих процессах будет постоянна. Следовательно, именно от начальной фазы зависит взаимное значение колебаний.

Например, если в обоих колебательных процессах, происходящих с равной частотой, начальные фазы будут равны, то нулевые и амплитудные значения обоих процессов будут всегда достигаться одновременно. Говорят, что процессы происходят синфазно.

Если начальная фаза в одном процессе будет равна нулю, а в другом — $pi$, то в этом случае нулевые значения будут достигаться процессами одновременно, а вот амплитудные — нет. Более того, в момент, когда амплитуда одного процесса будет максимально положительной, амплитуда другого процесса будет максимально отрицательной. Говорят, что эти два процесса происходят в противофазе.

При других начальных фазах такие процессы будут меняться «с отставанием» или «с опережением», в зависимости от конкретных значений. И, поскольку их частота одинакова, то отставание или опережение будет постоянно. Нулевые и амплитудные значения никогда не будут достигнуты одновременно.

Фаза колебаний

Параметры гармонического колебания

Любой колебательный процесс — это изменения некоторого параметра около среднего значения. Колебания бывают периодическими (маятник) и непериодическими (флаг на ветру). Если построить график колебательного процесса, то среднее значение на нём будет представлено горизонтальной прямой, а значение колеблющегося параметра — кривой, постоянно возвращающейся к среднему. При этом для непериодического колебания возвраты будут хаотичными, а для периодического — строго через одинаковый промежуток времени. Этот промежуток называется периодом колебания $T$.

Рис. 1. Периодические и непериодические колебания.

Простейшим периодическим колебанием является колебание, которое совершается по закону круговых функций (синуса или косинуса). Оно называется гармоническим. Поскольку в высшей математике доказывается, что любое колебание (в том числе непериодическое) можно представить в виду бесконечной суммы гармонических колебаний, то в первую очередь изучаются именно они. А по определению любое гармоническое колебание можно представить в виде функции:

$$A=A_0sin Bigg ( <2piover T>t +varphi_0 Bigg ),$$

  • $A_0$ — амплитуда колебания, максимальное отклонение мгновенного значения функции от нуля;
  • $T$ — период колебаний;
  • $t$ — свободная переменная — момент времени, для которого находится мгновенное значение амплитуды;
  • $varphi_0$ — начальная фаза колебаний.

Коэффициент $<2piover T>=omega$ при свободной переменной $t$ называется угловой частотой. Его физический смысл состоит в том, что это угол, проходимый гармонической функцией за единицу времени. Значение выражения $ <2piover T>t +varphi_0=varphi$, которое является аргументом функции синуса, называется полной фазой колебания.

Рис. 2. Фаза колебания.

Начальная фаза колебаний

При описании координаты колебательного движения мы использовали функции синуса и косинуса. Для косинуса мы записывали следующую формулу:

  • x = Xm*cos(ω0*t).

Но мы можем описать эту же траекторию движения и с помощью синуса. При этом нам необходимо сдвинуть аргумент на pi/2, то есть отличие синуса от косинуса — pi/2 или четверть периода.

Значение pi/2 называется начальной фазой колебания. Начальная фаза колебания — положение тела в начальный момент времени t = 0. Для того, чтобы заставить маятник колебаться, мы должны вывести его из положения равновесия. Мы можем это сделать двумя путями:

  • Отвести его в сторону и отпустить.
  • Ударить по нему.

В первом случае, мы сразу же изменяем координату тела, то есть, в начальный момент времени координата будет равна значению амплитуды. Для описания такого колебания удобнее использовать функцию косинуса и форму

либо же формулу

  • x = Xm*sin(ω0*t+&phi),

где φ- начальная фаза колебания.

Если мы ударим по телу, то в начальный момент времени его координата равняется нулю, и в таком случае удобнее использовать форму:

Два колебания, которые различаются только начальной фазой, называются сдвинутыми по фазе.

Например, для колебаний описанных следующими формулами:

  • x = Xm*sin(ω0*t),
  • x = Xm*sin(ω0*t+pi/2),

сдвиг фаз равен pi/2.

Сдвиг фаз еще иногда называют разностью фаз.

На следующем рисунке представлены два колебания сдвинутые друг относительно друга на разность фаз pi/2.

Фаза гармонического колебания

Из формулы гармонического колебания можно понять физический смысл фазы. Поскольку аргументом функции $sin(x)$ является угол поворота единичного вектора на координатной плоскости, выраженный в радианах, и его период равен $2pi$, то фаза — это часть периода колебания, соответствующая моменту $t$. Она еще выражается в радианах и тоже имеет период $2pi$.

Из формулы также можно видеть, что если $t=0$, то $varphi=varphi_0$ (полная фаза в начальный момент равна начальной фазе).

Определение фазы колебаний

Весь аргумент периодической функции (в данном случае косинуса:$ (_0t+varphi )$), описывающей колебательный процесс, называют фазой колебаний. Величина фазы колебаний в начальный момент времени, то есть при $t=0$, ($varphi $)- носит название начальной фазы. Устоявшегося обозначения фазы нет, у нас начальная фаза обозначена $varphi $. Иногда, чтобы подчеркнуть, что начальная фаза относится к моменту времени $t=0$ к букве, обозначающей начальную фазу, добавляют индекс 0, пишут, например, $_0.$

Единицей измерения начальной фазы является единица измерения угла — радиан (рад) или градус.

Разность фаз

Для одного колебательного процесса фаза не играет большой роли. В самом деле, если брать разные моменты времени за начальные, мы можем получать любое значение фазы, колебательный процесс при этом никак не изменится. Однако, когда речь идет о нескольких колебательных процессах, то значение фазы существенно возрастает. Именно фазой определяется разница мгновенных значений двух колебаний.

Рис. 3. Графики колебаний с различными фазами.

Если частоты колебаний неодинаковы, то каждый момент времени фазы будут различны, их разность также будет изменяться. Если же частоты колебаний одинаковы, то несмотря на изменение со временем фазы каждого колебания, разность фаз этих двух колебаний будет постоянной. Это может приводить к интересным ситуациям.

Например, если мы возьмем два колебания с одинаковыми амплитудами и частотами, но у первого начальная фаза будет равна нулю, а у второго — $pi$, то эти два колебания никогда не будут иметь одинаковых ненулевых значений. Более того, если эти колебания сложить, то их сумма всегда будет равна нулю. Говорят, что такие процессы происходят в противофазе.

Начальная фаза. Сдвиг фаз

В начальный момент времени t = 0 фаза

имеет значение φ0. Это значение фазы называется начальной фазой.

Два или несколько гармонических колебаний с одинаковыми частотами и амплитудами могут отличаться друг от друга только начальными фазами. Между колебаниями имеется разность фаз, или, как часто говорят, сдвиг фаз φс. Если начальная фаза первого колебания равна φ01, а второго φ02, то сдвиг фаз второго колебания относительно первого равен:

φc = φ02 — φ01. (1.6.2)

На рисунке 1.10 изображены графики колебаний, сдвинутых по фазе на . График 1 соответствует колебаниям, совершающимся по синусоидальному закону с начальной фазой, равной нулю (φ01 = 0):

График 2 соответствует колебаниям, сдвинутым по фазе на :

Начальная фаза этих колебаний

Таким образом, колебания, описываемые синусом и косинусом, представляют собой колебания со сдвигом фаз .

Что такое разность фаз

Обычно понятие разности фаз применяют, когда сравнивают два колебательных процесса между собой.

Рассмотрим два колебательных процесса (рис. 12). Каждый имеет свою начальную фазу.

( large varphi_) – для первого процесса и,

( large varphi_) – для второго процесса.

Определим разность фаз между первым и вторым колебательными процессами:

Величина (large Delta varphi ) показывает, на сколько отличаются фазы двух колебаний, она называется разностью фаз.

Связанные термины

Рассматривая два колебательных процесса одинаковой частоты, говорят о постоянной разности полных фаз (о сдвиге фаз

) этих процессов. В общем случае сдвиг фаз может меняться во времени, например, из-за угловой модуляции одного или обоих процессов.

Если два колебательных процесса происходят одновременно (например, колеблющиеся величины достигают максимума в один и тот же момент времени), то говорят, что они находятся в фазе

(колебания
синфазны
). Если моменты максимума одного колебания совпадают с моментами минимума другого колебания, то говорят, что колебания находятся в
противофазе
(колебания
противофазны
). Если разность фаз составляет ±90°, то говорят, что колебания находятся
в квадратуре
или что одно из этих колебаний —
квадратурное
по отношению к другому колебанию (опорному, «синфазному», т.е. служащему для условного определения начальной фазы).

Если амплитуды двух противофазных монохроматических колебательных процессов одинаковы, то при сложении таких колебаний (при их интерференции) в линейной среде происходит взаимное уничтожение колебательных процессов.

Сложение колебаний и начальная фаза

Тело, совершающее колебания, может участвовать в нескольких колебательных процессах. В таком случае возникает необходимость выяснить, каким будет результирующее колебание.

Допустим, что два колебания с одинаковыми частотами происходят по одной прямой. Уравнением результирующих колебаний будет выражение:

тогда амплитуда результирующего колебания равна:

где $A_1$; $A_2$ — амплитуды складывающихся колебаний; $_2;;_1$ — начальные фазы суммирующихся колебаний. При этом начальную фазу полученного колебания ($varphi $) вычисляют, применяя формулу:

Уравнение траектории точки, которая принимает участие в двух взаимно перпендикулярных колебаниях с амплитудами $A_1$и $A_2$ и начальными фазами $_2и_1$ имеет вид:

В случае равенства начальных фаз составляющих колебаний уравнение траектории имеет вид:

что говорит о движении точки по прямой линии.

Если разность начальных фаз складываемых колебаний составляет $Delta varphi =_2-_1=frac<2>,$ уравнением траектории становится формула:

что означает, траектория движения эллипс.

Фаза колебаний — Класс!ная физика

Фаза колебаний

Фаза колебаний (φ) характеризует гармонические колебания. Выражается фаза в угловых единицах — радианах.

При заданной амплитуде колебаний координата колеблющегося тела в любой момент времени однозначно определяется аргументом косинуса или синуса: φ = ω0t.

Фаза колебаний определяет при заданной амплитуде состояние колебательной системы (значение координаты, скорости и ускоренияв) любой момент времени.

Колебания с одинаковыми амплитудами и частотами могут различаться фазами.

Отношение указывает, сколько периодов прошло от момента начала колебаний.

График зависимости координаты колеблющейся точки от фазы.

Гармонические колебания можно представить как с помощью функции синуса, так и косинуса, т.к. синус отличается от косинуса сдвигом аргумента на .

Поэтому вместо формулы

можно для описания гармонических колебаний использовать формулу

Но при этом начальная фаза, т. е. значение фазы в момент времени t = 0, равна не нулю, а . В разных ситуациях удобно использовать синус или косинус.

Какой формулой пользоваться при расчетах?

1. Если в начале колебаний выводят маятник из положения равновесия, то удобнее пользоваться формулой с применением косинуса. 2. Если координата тела в начальный момент была бы равна нулю, то удобнее пользоваться формулой с применением синуса х = хm sin ω0t, т.к. при этом начальная фаза равна нулю. 3. Если в начальный момент времени (при t — 0) фаза колебаний равна φ, то уравнение колебаний можно записать в виде х = хm sin (ω0t + φ).

Колебания, описываемые формулами через синус и косинус, отличаются друг от друга только фазами. Разность фаз (или сдвиг фаз) этих колебаний составляет . Графики зависимости координат от времени для двух гармонических колебаний, сдвинутых по фазе на : где график 1 — колебания, совершающиеся по синусоидальному закону, график 2 — колебания, совершающиеся по закону косинуса.

Для определения разности фаз двух колебаний надо колеблющиеся величины выразить через одну и ту же тригонометрическую функцию — косинус или синус.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Механические колебания. Физика, учебник для 11 класса — Класс!ная физика

Свободные, затухающие и вынужденные колебания — Условия возникновения свободных колебаний. Математический маятник — Динамика колебательного движения. Уравнение движения маятника — Гармонические колебания — Фаза колебаний — Превращение энергии при гармонических колебаниях — Вынужденные колебания. Резонанс — Примеры решения задач — Краткие итоги главы

Примечания

К:Википедия:Статьи без источников (тип: не указан)

Понравилась статья? Поделиться с друзьями:
Добавить комментарий