Что такое токовая отсечка

Расчет зоны действия ТО, принцип действия

Токовая отсечка – это разновидность максимальной токовой защиты с ограниченной зоной действия, предназначенная для быстрого отключения короткого замыкания. Отсечки бывают мгновенные и с малой выдержкой времени до 0,6 секунд. Отличие отсечки от мтз в отсутствии у токовой отсечки реле времени.

Селективность действия токовой отсечки достигается ограничением ее зоны действия. Эта защита отстраивается от тока КЗ в конце защищаемой линии или места, до которого она должна действовать. Ниже рассмотрим принцип действия различных токовых отсечек и их расчет.

Мгновенная токовая отсечка на линии с односторонним питанием

Зона действия токовой отсечки определяется графически. На рисунке наша защищаемая линия между точками АВ. Сначала строится кривая зависимость значения тока короткого замыкания от расстояния до точки КЗ. Точка КЗ в нашем примере – это конец линии, точка А.

Затем строится прямая параллельная оси расстояния равная току срабатывания отсечки. Область пересечения прямой и кривой представляет собой зону действия защиты. В нашем примере зона действия защиты – это отрезок ВБ.

Также зону действия токовой отсечки можно определить по выражению:

  • xЛ – сопротивление линии, для которой выбираем защиту
  • EC – эквивалентная ЭДС генераторов системы
  • xC – сопротивление системы

Ток срабатывания защиты определяется по выражению ниже:

  • kН – коэффициент надежности
  • IK.MAX – максимальный ток короткого замыкания в конце линии

Коэффициент надежности учитывает погрешности при расчете тока кз и погрешность срабатывания реле.

Коэффициент чувствительности отсечки рассчитывается по выражению:

где в числителе максимальный ток КЗ в начале защищаемой линии, в примере это точка В, а в знаменателе ток срабатывания защиты.

Мгновенная токовая отсечка на линии с двусторонним питанием

Рассмотрим схему линии с двусторонним питанием. По обоим концам расположены генераторы. Вначале необходимо определить максимальные токи короткого замыкания в конце линии с обеих сторон. Тот из токов, величина которого будет больше, и будет принят за максимальный ток короткого замыкания.

На линиях с двусторонним питанием ставится два комплекта отсечек с обеих сторон линии. Зоны действия определяются аналогично, как и для линии с односторонним питанием.

На рисунке у нас одна отсечка защищает при кз в точке А, вторая при кз в точке В. Зона действия первой – ВБ, второй – АГ. Максимальный ток кз в нашем случае больше Ik(A). Его и принимаем за расчетный для обеих отсечек.

Ток срабатывания защиты выбирается по большему из двух выражений:

Второе выражение используют при расчетах на линиях с двусторонним питанием. При наличии двух источников питания (генераторов), между ними проходят токи качания.

Максимальный ток качания определяется как сумма ЭДС генераторов деленная на сопротивление цепи между двумя генераторами, включая сопротивления генераторов (сверхпереходные x”d).

Мгновенные токовые отсечки являются самыми простыми защитами. К их плюсам можно отнести быстродействие и простоту схемы. К недостаткам относится область действия, так как она не распространяется на всю линию. Кроме линий, токовые отсечки применяются на трансформаторах. Стоит упомянуть и токовые отсечки, с выдержкой времени. А если соединить отсечку с выдержкой времени, мгновенную и максимальную токовую защиту, то получится трехступенчатая защита, которая может заменить более сложные защиты.

Токовая отсечка трансформатора

Токовая отсечка трансформатора является самой простой защитой трансформатора, которая защищает его от однофазных и междуфазных коротких замыканий. Принцип действия аналогичен принципу действия токовой отсечки линии.

Отсечка не будет срабатывать при повреждениях, сопровождаемых малыми токами, например, витковые замыкания, замыкания на землю в обмотке. Устанавливается токовая отсечка на трансформаторах мощностью менее 6300кВА. Если на трансформаторе установлена дифференциальная защита, то токовая отсечка не требуется.

Перейдем к расчету параметров защиты. Начнем с тока срабатывания защиты.

Ток срабатывания токовой отсечки отстраивается от броска тока намагничивания и от максимального тока короткого замыкания за трансформатором. Бросок тока намагничивания, который появляется при пуске трансформатора, составляет 3-5 от номинального.

  • kН – коэффициент надежности, зависит от типа реле
  • IK.MAX – максимальный ток короткого замыкания за трансформатором
  • IНАМ – ток намагничивания трансформатора, равный 3-5 от номинального тока трансформатора

Ток срабатывания реле (уставка) определяется по выражению ниже:

  • kСХ – коэффициент схемы
  • IС.З. – ток срабатывания защиты
  • nТТ – коэффициент трансформации ТТ

Коэффициент чувствительности токовой отсечки трансформатора

К преимуществам отсечки относится её быстродействие. Мгновенное отключение позволяет уменьшить возможные повреждения трансформатора и оборудования, запитанного от трансформатора.

К недостаткам можно отнести то, что зона действия отсечки ограничена. Поэтому отсечка вместе с газовой защитой трансформатора и максимальной токовой защитой составляют защиту трансформаторов малой мощности.

2020 Помегерим! – электрика и электроэнергетика

7-9. Токовая отсечка

Токовой отсечкой называется максимальная токовая защита с ограниченной зоной действия, имеющая в большинстве случаев мгновенное действие.

В отличие от максимальной токовой защиты селективность действия токовой отсечки достигается не выдержкой времени, а ограничением зоны ее действия. Для этого ток срабатывания отсечки отстраивается не от тока нагрузки, а от тока к. з. при к. з. в конце защищаемой линии или в другой определенной точке, где отсечка не должна действовать.

Принцип действия отсечки основан на том, что величина тока к. з. убывает при удалении места к. з. от источника питания. При к. з. в начале линии у места установки защиты величина тока к. з. имеет наибольшее значение и по мере удаления места к. з. от источника питания постепенно уменьшается, поскольку увеличивается сопротивление до места к. з. Примерный характер изменения тока к. з. при удалении места к. з. от источника питания показан на рис. 7-23.

Ток срабатывания отсечки мгновенного действия выбирается так, чтобы она не работала при повреждениях на смежной линии или в трансформаторе питаемой подстанции. Для этого ток срабатывания должен быть больше максимального значения тока к. з. при к. з. на шинах противоположной подстанции, . т. е. в точке 5 на рис. 7-23, и определяется по формуле:

где Iк.з.макс — максимальное значение тока к. з. при к. з. на шинах противоположной подстанции; — коэффициент схемы; — коэффициент надежности, принимаемый равным: а) при выполнении отсечки токовыми реле типа ЭТ-521 или РТ-40, действующими через промежуточное реле, 1,2—1,3; б) при выполнении отсечки теми же токовыми реле, но действующими через реле времени, 1,1 — 1,2; в) при выполнении отсечки электромагнитными элементами реле типа РТ-80, РТ-90 1,4—1,5.

Зона действия отсечки определяется графически, как показано на рис. 7-23. Для этого вычисляются токи к. з., проходящие по защищаемой линии при к. з. в начале и конце линии, а также на расстояниях длины от начала, и строится кривая изменения тока к. з. в зависимости от удаленности места к. з. от источника питания (кривая 1). По формуле (7-34) определяется ток срабатывания отсечки и на том же чертеже проводится прямая тока срабатывания 2. Точка пересечения прямой 2 с кривой 1 определяет зону действия отсечки. Отсечка действует в зоне, где ток к. з. превышает ток срабатывания (заштрихованная часть графика).

Коэффициент чувствительности отсечки определяется как

где Iк. з1 — ток к. з. при повреждении в начале линии у места установки отсечки (в точке 1).

В отдельных случаях отсечка может защищать всю линию (рис. 7-24). Благодаря тому, что к линии Л1 подключен только один трансформатор Т, допустимо при повреждении этого трансформатора отключать линию со стороны питающей подстанции.

Поэтому ток срабатывания отсечки выбирается так, чтобы она не действовала при повреждениях на линиях низшего напряжения Л2. Для этого в формулу (7-34) необходимо подставлять максимальное значение тока к. з. при к. з. на шинах низшего напряжения в точке К. При выбранном таким образом токе срабатывания мгновенная отсечка будет надежно защищать всю линию, шины высшего напряжения подстанции и часть обмотки трансформатора Т.

б) Токовая отсечка на линиях с двусторонним питанием

Если ток срабатывания отсечки, установленной в точке Б на рис. 7-25, выбрать, как для линии с односторонним питанием, т. е.

и отложить его на графике, как показано пунктиром на рис. 7-25, то нетрудно убедиться в том, что отсечка будет действовать неселективно при к. з. в точке K1 так как ток Iк.з1 больше выбранного выше тока срабатывания отсечки Iс.зБ.

Поэтому для селективного действия отсечек на линиях с двусторонним питанием их токи срабатывания должны

определяться по формуле (7-34) по большему значению тока к. з., проходящему по линии при к. з. на шинах одной и другой подстанции. Для рассматриваемого случая на рис. 7-25 большим является ток I к.з1, проходящий по линии при к. з. в точке K1.

Поэтому токи срабатывания обеих отсечек должны быть равными и определяться как.

Зоны действия отсечек определяются графически, как точки пересечения прямой тока срабатывания Icpаб с кривыми изменения токов к. з.

Рассмотренное условие выбора тока срабатывания отсечек для линий с двусторонним питанием не является единственным. Для линии, по которым могут проходить токи качаний, вызванные нарушением устойчивости или несинхронным включением, вторым условием выбора тока срабатывания отсечек является отстройка от максимального тока качаний. Отстройка производится по формуле

где Iкач.макс — максимальный ток качаний [Л. 14, 70]. Схемы отсечек отличаются от схем максимальных токовых защит отсутствием реле времени, вместо которых устанавливаются промежуточные реле.

в) Сочетание токовой отсечки с максимальной токовой защитой

Вследствие того, что токовая отсечка, как правило, защищает только часть линии, она применяется не как основная, а как дополнительная защита. Применение токовой отсечки дает возможность ускорить отключение повреждений, сопровождающихся прохождением больших токов к. з., вызывающих глубокие понижения напряжения на шинах подстанций. В ряде случаев применение токовых отсечек позволяет также снизить выдержки времени максимальных токовых защит.

При сочетании токовой отсечки с максимальной токовой защитой получается токовая защита со ступенчатой характеристикой времени срабатывания (рис. 7-26). Такая защита имеет отсечку, как первую ступень (первую зону), в пределах которой она действует мгновенно и максимальную, токовую защиту, как вторую ступень (вторую зону), в пределах которой действует с выдержкой времени.

В ряде случаев применяется сочетание отсечки мгновенного действия с отсечкой, имеющей небольшую выдержку времени (порядка 0,5—1 с), и с максимальной токовой защитой. При таком сочетании защита имеет три ступени и соответственно трехступенчатую характеристику времени срабатывания.

При сочетании отсечек с максимальной токовой защитой с зависимой характеристикой времени срабатывания установки дополнительных реле не требуется, так как реле РТ-80 имеют встроенный электромагнитный элемент отсечки.

Токовая отсечка

Токовая отсечка – это вид релейной защиты, состоящий в обесточивании цепи при возникновении на линии короткого замыкания. Поблагодарив Шабада М.А., приступим.

Общие определения

Ещё Эдисон использовал предохранители для защиты сетей от короткого замыкания. Отдельные историки считают, первые автоматы входят в число его изобретений. Но авторам не удалось найти тому свидетельств. Что касается релейной защиты, обнаружено элементарное незнание определений людьми. К примеру, в ответах Майл.ру человек поинтересовался, чем токовая отсечка отличается от максимальной токовой защиты. Определения схожие, но разное назначение!

  • Токовой отсечкой принято называть немедленное отключение защищаемого участка цепи при возникновении короткого замыкания.
  • Максимальная токовая защита отличается тем, что охраняет усложнённую цепь, иногда разветвлённую. Срабатывает с задержкой – предоставляя возможность системам, стоящим ниже по линии, отключиться раньше. Тогда максимальная токовая защита ничего не предпримет. Если ситуация накаляется, через заданный интервал времени обесточивается ветка целиком.

Это легко пояснить на примере квартирного щитка. Допустим, в ванной комнате поставили розетку (не ближе заданного расстояния от источников влаги) и защитили дифференциальным автоматом. Квартира защищена от короткого замыкания на входе в щиток. Автомат на 63 А, к примеру, если его чувствительность слишком велика (класс А или В), способен обрезать помещения раньше, нежели среагирует защита по дифференциала. Тогда хозяин оставит без света всю семью. Следовательно, на входе в квартиру полагается так организовать токовую защиту, чтобы дать возможность стоящим за ней автоматам сделать дело, вырубив единственное помещение.

В промышленности мудрецы умудряются разбить линию питания, что токовая отсечка отвечает за собственный сегмент. Если короткое замыкание по соседству, она не отреагирует. Максимальная токовая защита становится запасным вариантом для локальной аппаратуры. Если не отработает местный автомат, питание убирается с небольшой задержкой. Это называется дальним резервированием, приборы максимальной токовой защиты вправе находиться далеко от места аварии. В комплексе две разновидности предохраняющих систем называются двухступенчатой токовой защитой. Обе характеризуются рядом качеств:

  1. Селективность – способность обособленно реагировать лишь на требуемые аварии. Порой качество называют избирательностью.
  2. Чувствительность. Полагается по возможности продлить действие защитных систем вдоль линии. Что не всегда удаётся выполнить в отношении протяжённых систем. Из-за удалённости датчики не улавливают момент возникновения аварии.
  3. Быстродействие обеспечивается в отключении защищаемого участка в минимальный срок. Учитывая сказанное выше о необходимости дать время нижестоящим ступеням системы выполнить работу раньше.
  4. Надёжность трактуется как безотказность.

Исполнительная часть

Оба вида мероприятий организуются при помощи максимальных реле, которые в теории защиты делятся на:

  1. Первичные и вторичные.
  2. Прямого и косвенного действия.

Первичным реле прямого действия называется разновидность, где контактор и катушка непосредственно включены в цепь защиты. Управляются по току потребления аппаратуры и его же обрывают. Первичные реле прямого действия широко применяются в цепях до 1 кВ. С повышением класса напряжения до 10 кВ часты вторичные реле прямого действия. Это означает – для снятия величины тока из защищаемой цепи применяется измерительный трансформатор. Контактор включён последовательно с нагрузкой. Этим сильно снижается потребление, уменьшается вносимая прибором в цепь реактивная мощность.

Вторичные реле косвенного действия используются там, где нерационально пытаться переключить громоздкий контактор через маломощный токовый трансформатор. При больших потребляемых токах и повышенных классах напряжения дуга гасится с трудом, приходится применять особые меры. Первичная обмотка токового трансформатора состоит из 1-2 витков либо половинки, не предоставляя сильного управляющего сигнала. Приходится применять указательное реле, командующее исполнительным электромагнитным реле.

Питание катушки контактора выполняется от дополнительной низковольтной сети либо аккумуляторной батареи. Тогда управляющий ток называется оперативным, используется исключительно для приведения в действие схемы защиты.

Максимальные токовые реле изготавливаются с встроенной задержкой либо без. В последнем случае без доработки схемы годятся только для токовой отсечки, способны применяться в тандеме с таймером. И тогда становится возможной максимальная токовая защита. Последний случай обеспечивает большую гибкость, изготовители не в силах предугадать всех особенностей, следовательно, не определят задержку срабатывания верно. Характеристика подобной системы называется независимой от тока, работает без учёта его величины при коротком замыкании на линии. Налицо аналог электромагнитного звена квартирного защитного автомата.

Максимальные реле тока с замедленным срабатыванием часто конструируются так, что время срабатывания тем меньше, чем больше потечёт в цепи амперов. Следовательно, характеризуются зависимой характеристикой. Современные автоматические выключатели напоминают комбинированный класс оборудования, реле с ограниченно зависимой характеристикой. Когда срабатывание выше определённого порога происходит мгновенно, а ниже его – с запаздыванием. К примеру, А. Земсков показывал, что современные автоматы способны целый час работать при перегрузке на 45% прежде, чем питание пропадает.

Защита с зависимой характеристикой часто используется в цепях с классом напряжения 20 кВ. Вполне сочетаются с предохранителями, на коротком отрезке показывающими зависимую характеристику. Высоковольтные линии, как правило, демонстрируют независимую защиту. Если нужна задержка, рекомендуется применять реле времени (таймер). Токовая отсечка строится так, чтобы не отрабатывать КЗ далее по линии. Если брать пример с квартирным щитком, ситуация обеспечивается включением последовательно двух автоматов:

  1. 63 А на вводе в щиток.
  2. 16 А на розетки.

Очевидно, более чувствительным считается автомат с меньшим номиналом, срабатывающий раньше. Хотя пример не отличается большой наглядностью, но даёт представление, как обеспечивается селективность систем токовой отсечки. Одновременно вносится постулат о невозможности защитить всю линию одновременно.

Токовая отсечка: схемы включения реле

При реализации схемы рассматривают все виды коротких замыканий. Иногда не удаётся распознать подобные ситуации по величине тока, тогда в ход идут реле обратной и нулевой последовательности. Стандартные используемые схемы токовой отсечки:

  1. Неполная звезда. Охватывает посредством двух или трёх реле лишь две фазы сети. Часто применяется в цепях 35 кВ с изолированной или компенсированной нейтралью (где малы токи утечки на грунт).
  2. Полная звезда. Фазы охватываются двумя, тремя или четырьмя реле. Часто применяется в сетях 110 кВ с глухозаземлённой нейтралью и большим перекосом по фазам (велики токи, идущие на грунт).
  3. Треугольник. Система из двух или трёх реле, измеряющих линейные напряжения. Чаще встречается в цепях защиты трансформаторов звезда-треугольник.
  4. Двухфазная схема с одним реле на практике встречается редко. В просторечье называют восьмёркой, в старой литературе – неполным треугольником. Защищает двигатели небольшой мощности.

Рассмотрим для примера, как работает неполная звезда (см. рис.), у которой трансформаторы тока включены в две линии – А и С. Возможные случаи поведения системы:

  1. Короткое замыкание по всем фазам приводит к ситуации, когда в обратном проводе (РТ3) тока нет, а в прочих ветвях его значение велико. Происходит срабатывание.
  2. При межфазном замыкании А и С происходит аналогичное.
  3. Прочие виды коротких замыкания вызывают перекос фаз, появляется ток в обратном проводе. Он оценивается реле РТ3, дающим команду на разрыв сети питания.

Недостаток неполной звезды – она принципиально не в состоянии отследить замыкание на землю фазы В. В результате подобная защита неприемлема для цепей с большими токами утечки на землю. В системах токовой отсечки частыми гостями становятся промежуточные реле с мощными контакторами. Когда полагается быстро выключить питание, требуются особенные качества. Большинство максимальных токовых реле не в состоянии справиться с оперативным отключением цепи.

Отличие полной звезды: возможно проследить любые короткие замыкания, межфазные и утечки на грунт. Общий провод здесь называется не обратным, а нулевым: содержит реле, улавливающие токи нейтрали и заземлителя основной линии. При прочих видах коротких замыканий нагрузка здесь невелика. Полная звезда применяется на линии с классом напряжений 110 кВ и глухозаземлённой нейтралью. Основания:

  1. В цепях от 3 до 35 кВ токи утечки на землю невелики, нет смысла обрывать питание полностью. Используется неполная звезда.
  2. Для сетей 110 кВ и выше часто вместо максимальной токовой применяется дистанционная защита. Дополнительные две причины:
  • При изолированной нейтрали в линии 110 кВ трансформаторы тока служат и для организации дифференциальной защиты. В результате вторичные обмотки соединены треугольником (а не звездой).
  • Вторая причина неприменимости – однофазные замыкания на землю не обязаны вызывать отключение линии. Это не считается аварией, работа продолжается с выездом на место происшествия ремонтной бригады.

При включении треугольником перечисленные выше доводы «против» недействительны. Указанная схема особенно часто применяется для сетей с классом напряжения выше 35 кВ. Треугольник хорош отсутствием нейтрали, большие токи коротких замыканий на землю не проходят преобразованными в цепь защиты, а замыкаются по периметру. Это важно при повышенном напряжении. Дополнительным преимуществом становится увеличение на 15% чувствительности к двухфазным замыканиям.

Наконец, при однорелейной защите измерению подвергаются лишь две фазы. Благодаря этому отслеживаются указанные типы неисправностей:

  1. Любое межфазное короткое замыкание. Чувствительность по этим видам аварий отличается в два раза. В зависимости от замкнувшихся фаз.
  2. Короткое замыкание на землю измеренных фаз (две из трёх).
  3. Короткое замыкание по всем трём фазам.

Невозможно отследить уход на грунт третьей линии, где нет измерителя. Вдобавок чувствительность в 1,7 раз ниже, нежели в любой из приведённых выше схем токовой отсечки. Такой защитой обычно не снабжают трансформатор, вторичные обмотки которого объединены в треугольник, ведь блокируется определение конкретного вида двухфазного короткого замыкания. Единственным достоинством по факту становится экономичность – используется единственное реле. Однорелейная схема токовой отсечки время от времени служит для защиты двигателей класса напряжений в 1 кВ и выше, мощностью до 2 МВт.

Токовая отсечка: схема, принцип действия

Ток, который поступает в электрическую сеть, постепенно приводит к нагреву всех составляющих ее элементов. Поэтому все они создаются с таким запасом прочности, чтобы выдерживать заданные нагрузки (практически как угодно долго) и без последствий работать при протекании тока в пределах допустимой нормы.

Но если в результате возникновения короткого замыкание в сети значительно повышается нагрузка, что зачастую приводит к повреждению проборов питающихся от электричества, возгоранию или иным последствиям, которые не приводят не к чему хорошему. При этом помимо приборов, которые в этот момент могут быть подключенные к сети, страдает также и сами элементы цепи, и может происходить их частичное или полное разрушение.

В принципе можно было бы создавать элементы, которые могли бы выдерживали короткое замыкание в течение очень длительного времени, но тогда бы из-за используемых материалов они бы были неоправданно дороги.

Понятие токовая отсечка

И так, что же такое токовая отсечка? Если говорить без научных терминов, то токовая отсечка – это одна из существующих разновидностей защиты, которое отличается быстродействием.

Главный ее принцип действия, который отличает ее от других способов, это обеспечение избирательности для разрыва соединения. Он заключает в том, что можно создать нужную ступень величины тока при максимальных показаниях, от значений которых происходит отключение сети от питания.

Становиться понятно, что такой механизм производит полный надзор над показаниями величин тока на участке нахождения. При возникновении момента, во время которого начинается возрастание силы тока намного превышающие заданное значение, происходит реакция, и участок полностью отключается от поступления в него электричества. Это происходит при максимальной токовой отсечке.

Следует знать! Величина, при которой происходит срабатывание защиты, получило название – уставка.

Виды токовых отсечек

Существует два вида токовых отсечек.

  1. С мгновенным действием – они полностью определяются собственным временем срабатывания. У них главным элементом будет являться установленное реле (токовое). Для вспомогательных элементов также используются релейные устройства, которые занимаются тем, что подают сигнал на разрыв.
  2. С временной задержкой. В них входит устройство, которое позволяет задавать параметры времени. У таких отсечек временное срабатывание может составлять диапазон от 0,2 до 0,6 секунд.

Принцип действия токовой отсечки

При установке показателей для отключения нужно выбирать их таким образом, чтобы отключение происходило как можно быстрее, чем может произойти повреждение или разрушения в цепи.

Токовая отсечка реализуется совершенно разными способами. Зачастую для такого отключения применяется электромагнитное реле тока. В них при возникновении короткого замыкания происходит смыкание контактов, и подается сигнал для отключения защищаемого сегмента или участка цепи.

Так же имеется такой тип защиты – как предохранители. Они срабатывают из-за повышения температуры, из-за электрического тока. То есть, проще говоря, в них находится очень плавкий элемент, которые под воздействие разрушается и таким образом происходит отключение.

Токовая отсечка незамедлительного срабатывания

Показания для возникновения отсечки выбирается исходя из того, чтобы она не срабатывала во время возникновения нарушений на участках линий, которые являются смежными для защищаемой. Для этого току при котором будет происходить отключение необходимо иметь показания, которые будут превышать самые наибольшие показания при коротком замыкании.

Чтобы определить зону действия токовой отсечки и коэффициент чувствительности, можно воспользоваться графическими показателями. Чтобы их получить надо вычислить токи короткого замыкания, которые будут проходить по цепи во время его возникновения, и сделать это в самом начале и конце линии. К тому же вычисление нужно произвести от начала на в промежутках длины равной ¾; ½ и ¼. Исходя из этих полученных данных, можно построить ломаную линию, которая покажет изменение тока КЗ. Отсечка должна быть задействована в той зоне, где ток замыкания будет превышать ток при срабатывании.

Следует учитывать, что чем выше показания токов при коротком замыкании, которые получаются в начале и конце линии, тем шире становиться промежуток, который входит в отсечку. Так по ПЭУ, существуют рекомендации, что зона действия токовой отсечки применяется, если она охватывает более двадцати процентов от линии, которую следует защитить.

Так же в исключительных случаях отсечка может быть использована как защита всей линии (рис.1).

Рис.1. Защита всей линии с помощью токовой отсечки

По времени действие мгновенная отсечка зависит от того времени за период, которого происходит срабатывание токовых и промежуточных реле. Если используются промежуточные реле с периодом действия – около 0,02 секунды, то время срабатывания отсечки будет составлять промежуток от 0,04 до 0,06 секунд.

Неселективные отсечки мгновенного действия

Ее действие происходит за пределами собственной линии. Она находит свое применение, чтобы произвести быстрое отключение по всей линии, которая находится под защитой, но только в тех случаях, когда нужно соблюсти устойчивость (рис.2).

Рис. 2. Неселективная отсечка

Токовая осечка при линиях с двухсторонним питанием

Для определения первого условия токовой осечки трансформатора и для их селективного действия нужно определить наибольшее показания тока при коротком замыкании, который будет находиться в линии на шинах двух участках (то есть на подстанциях).

Но существуют и другие условия для определения тока для разрыва на участке с двухсторонним питанием. В таких участках, на протяжение которых может произойти появление токов качания, из-за неупорядоченного включением или изменения устойчивости. Так возникает, второе условие для задействования отсечек — появление максимального тока качания.

Токовая отсечка и максимальная токовая защита

Если сочетать токовую отсечку и максимальную токовую защиту, то получается токовая защита, для которой характерно ступенчатое время срабатывания. В таком сочетании отсечка будет действовать мгновенно в пределах первой ступени, а максимальная токовая защита будет действовать как вторая ступень и действовать будет согласно выдержки по времени (рис.3).

Рис. 3. Сочетание отсечки и МТЗ

Так можно применять сочетание отсечки мгновенного действия с отсечкой, у которой будет присутствовать задержку по времени и максимальную токовую защиту. В данном случае такая схема токовой отсечки будет иметь уже три ступени и иметь три разных времени срабатывания.

5. Токовые отсечки

5.1. Принцип действия

Токовая отсечка – разновидность токовой защиты, позволяющая обеспечить быстрое отключение КЗ.

Токовые отсечки (ТО) подразделяются на

– отсечки мгновенного действия;

– отсечки с выдержкой времени (0,3. 0,6 с).

Селективность токовых отсечек достигается ограничением их зоны работы.

Величина тока КЗ, протекающий по линии, зависит от места повреждения:

(5.1)

где EC – ЭДС системы;

XC – сопротивление системы;

XWK – сопротивление линии до точки КЗ;

XY – удельное сопротивление линии;

LK – длина от начала линии до места КЗ.

Для обеспечения селективности ток срабатывания защиты IC > I КЗ1 – тока КЗ на шинах противоположной подстанции.

Токовые отсечки применяются как в радиальных сетях с односторонним питанием, так и в сети, имеющей двустороннее питание.

5.2. Схемы отсечек

В сети с глухозаземленной нейтралью применяют трехфазные схемы, от КЗ всех видов. Для защиты от междуфазных КЗ используется двухфазная схема «неполная звезда». Схемы ТО аналогичны схемам МТЗ за отсутствием реле времени у мгновенных отсечек.

В сети с изолированной нейтралью или заземленной через большое сопротивление применяются двухфазные схемы.

Как и МТЗ, ТО выполняется на постоянном и переменном оперативном токах.

5.3. Отсечки мгновенного действия на линиях с односторонним питанием

5.3.1. Ток срабатывания отсечки

По условию селективности защита не должна работать за пределами защищаемой линии АВ, в токе В (см. рис. 5.3.1):

где I К(В)макс – максимальный ток КЗ в фазе линии при КЗ на шинах подстанции В ;

k Н – коэффициент надежности, 1,2. 1,3 – для отсечек ЛЭП с реле типа РТ.

5.3.2. Зона действия отсечки

Зона действия ТО определяется графически (рис. 5.3.1) или по формуле:

(5.3)

где XW – сопротивление линии;

XC – сопротивление системы.

ПУЭ рекомендуют применять отсечку, если её зона действия охватывает не меньше 20% защищаемой линии.

Для устранения мертвой зоны направленных защит отсечка применяется и при меньшей зоне действия.

При схеме работы линии блоком с трансформатором отсечку отстраивают от тока КЗ за трансформатором (рис. 5.3.2). В этом случае отсечка защищает всю линию и весьма эффективна.

5.3.3. Время действия отсечки

При применении быстродействующих промежуточных реле ( с временем срабатывания 0,02 с) t ТО =0,04. 0,06.

В схемах с промежуточными реле в расчетах не учитывается апериодическая составляющая тока, поскольку она затухает очень быстро, за 0,02. 0,03 с .

На линиях, защищенных от перенапряжений трубчатыми разрядниками, отсечка может срабатывать при их действии. Время срабатывания разрядника: tP =0,01. 0,02 с, а при их каскадном действии – 0,04. 0,06 с. В этом случае применяют промежуточные реле с временем действия – 0,06. 0,08 с.

5.4. Неселективные отсечки

Неселективная отсечка – это мгновенная отсечка, действующая за пределами своей линии.

Применяется в случаях, когда это необходимо для сохранения устойчивости. Неселективное действие исправляется при помощи АПВ, включающего обратно неселективно отключившуюся линию.

5.5. Отсечки на линиях с двусторонним питанием

Для определения тока срабатывания отсечек необходимо определить токи I К З( В)отG1 и I КЗ(А)отG2 .

Ток срабатывания защиты вычисляется по наибольшему из этих токов:

Во избежание неправильной работы отсечки при качаниях её ток срабатывания должен отстраиваться и от токов качания I кач :

где k Н – коэффициент надежности, k Н = 1,2. 1,3;

(5.6)

XAB – суммарное сопротивление от генератора А до В: XGA + XGB + XC ;

– сверхпереходное сопротивление генераторов;

XC – сумма сопротивлений всех остальных элементов, включенных между шинами генераторов.

Ток срабатывания выбирается по большему из двух значений (5.4) и (5.5).

5.6. Отсечки с выдержкой времени

5.6.1. Сеть с односторонним питанием

Мгновенная отсечка защищает только часть линии, чтобы выполнить защиту всей линии с минимальным временем действия применяется отсечка с выдержкой времени:

t ТО1 = t ТО2 + D t . Практически t ТО1 » 0 ,3 . 0,6 зависит от точности реле времени,

5.6.2. Сеть с двусторонним питанием

где I К1 – ток от системы при КЗ в конце зоны отсечки 2.

5.7. Токовая трехступенчатая защита

Обычно МТЗ сочетают с мгновенной отсечкой (МО) и отсечкой с выдержкой времени (ОВВ), (рис. 5.7.1).

5.8. Применение токовых отсечек

Токовые отсечки используются как основные (в сетях низкого напряжения) и резервные (сети высокого напряжения) защиты на линиях с односторонним питанием. На линиях с двусторонним питанием отсечки используются как резервные защиты.

Отсечки применяются как резервные защиты для мощных силовых трансформаторов и как основные для маломощных.

· токовая отсечка в двухфазном, двухрелейном исполнении – комплекты КЗ 9 и КЗ9/2;

· МТЗ с независимой выдержкой времени в двухфазном, двухрелейном исполнении – КЗ12;

· МТЗ в двухфазном двухрелейном исполнении и ТО – двухфазное, трехрелейное исполнение – комплект КЗ13;

· МТЗ с независимой выдержкой времени – двухфазное, трехрелейное исполнение – комплект КЗ17.

1. Конструктивно одна из самых простых защит.

2. Высокая быстрота действия.

1. Неполный охват зоной действия защищаемой линии.

2. Непостоянство зоны действия под влиянием сопротивлений в месте повреждения и изменений режима системы.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий