Что входит в состав электропривода

Электрические приводы. Виды и устройство. Применение и работа

Электропривод – электромеханическая система, служащая для привода в движение функциональных органов машин и агрегатов для выполнения определенного технологического процесса. Электрические приводы состоят из электродвигателя, устройства преобразования, управления и передачи.

Устройство

С прогрессом промышленного производства электрические приводы заняли в быту и на производстве лидирующую позицию по числу электродвигателей и общей мощности. Рассмотрим структуру, типы, классификацию электроприводов, и предъявляемые к нему требования.


1 — Передний крепеж
2 — Винтовая передача
3 — Концевой датчик
4 — Электродвигатель
5 — Зубчатая передача
6 — Задний крепеж

Функциональные компоненты

  • Р – регулятор служит для управления электроприводом.
  • ЭП – электрический преобразователь служит для преобразования электроэнергии в регулируемую величину напряжения.
  • ЭМП – электромеханический преобразователь электричества в механическую энергию.
  • МП – механический преобразователь способен изменять быстродействие и характер движения двигателя.
  • Упр – управляющее действие.
  • ИО – исполнительный орган.
Функциональные части
  • Электропривод.
  • Механическая часть.
  • Система управления.

Исполнительный механизм является устройством, которое смещает рабочую деталь по поступающему сигналу от управляющего механизма. Рабочими деталями могут быть шиберы, клапаны, задвижки, заслонки. Они изменяют количество поступающего вещества на объект.

Рабочие органы могут двигаться поступательно, вращательно в определенных пределах. С их участием производится воздействие на объект. Чаще всего электропривод с исполнительным механизмом состоят из электропривода, редуктора, датчиков положения и узла обратной связи.

Сегодня электрические приводы модернизируются по их снижению веса, эффективности действия, экономичности, долговечности и надежности.

Свойства привода
  • Статические . Механическая и электромеханическая характеристика.
  • Механические . Это зависимость скорости вращения от момента сопротивления. При анализе динамических режимов механические характеристики полезны и удобны.
  • Электромеханические . Это зависимость скорости вращения от тока.
  • Динамические . Это зависимость координат электропривода в определенный момент времени при переходном режиме.
Классификация

Электрические приводы обычно классифицируются по различным параметрам и свойствам, присущим им. Рассмотрим основные из них.

По виду движения:
  • Вращательные.
  • Поступательные.
  • Реверсивные.
  • Возвратно-поступательные.
По принципу регулирования:
  • Нерегулируемый.
  • Регулируемый.
  • Следящий.
  • Программно управляемый.
  • Адаптивный. Автоматически создает оптимальный режим при изменении условий.
  • Позиционный.
По виду передаточного устройства:
  • Редукторный.
  • Безредукторный.
  • Электрогидравлический.
  • Магнитогидродинамический.
По виду преобразовательного устройства:
  • Вентильный. Преобразователем является транзистор или тиристор.
  • Выпрямитель-двигатель. Преобразователем является выпрямитель напряжения.
  • Частотный преобразователь-двигатель. Преобразователем является регулируемый частотник.
  • Генератор-двигатель.
  • Магнитный усилитель-двигатель.
По методу передачи энергии:
  • Групповой . От одного мотора через трансмиссию приводятся в движение другие исполнительные органы рабочих машин. В таком приводе очень сложное устройство кинематической цепи. Электрические приводы такого вида являются неэкономичными из-за их сложной эксплуатации и автоматизации. Поэтому такой привод сегодня не нашел широкого применения.
  • Индивидуальный . Он характерен наличием у каждого исполнительного органа отдельного электродвигателя. Такой привод является одним из основных на сегодняшний день, так как кинематическая передача имеет простое устройство, улучшены условия техобслуживания и автоматизации. Индивидуальный привод нашел популярность в современных механизмах: сложных станках, роботах-манипуляторах, подъемных машинах.
  • Взаимосвязанный . Такой привод имеет несколько связанных электроприводов. При их функционировании поддерживается соотношение скоростей и нагрузок, а также положение органов машин. Взаимосвязанные электрические приводы необходимы по соображениям технологии и устройству. Для примера можно назвать привод ленточного конвейера, механизма поворота экскаватора, или шестерни винтового пресса большой мощности. Для постоянного соотношения скоростей без механической связи применяется схема электрической связи нескольких двигателей. Такая схема получила название схемы электрического вала. Такой привод используется в сложных станках, устройствах разводных мостов.
По уровню автоматизации:
  • Автоматизированные.
  • Неавтоматизированные.
  • Автоматические.
По роду тока:
  • Постоянного тока.
  • Переменного тока.
По важности операций:
  • Главный привод.
  • Вспомогательный привод.
Подбор электродвигателя

Чтобы приводы производили качественную работу, необходимо правильно выбрать электрический двигатель. Это создаст условия долгой и надежной работы, а также повысит эффективность производства.

При подборе электродвигателя для привода агрегатов целесообразно следовать некоторым советам по:
  • Требованиям технологического процесса выбирают двигатель с соответствующими характеристиками, конструктивного исполнения, а также метода фиксации и монтажа.
  • Соображениям экономии подбирают надежный, экономичный и простой двигатель, который не нуждается в больших расходах на эксплуатацию, имеет малый вес, низкую цену и небольшие размеры.
  • Условиям внешней среды и безопасности подбирают соответствующее исполнение мотора.

Правильный подбор электродвигателя обуславливает технико-экономические свойства всего привода, его надежность и длительный срок работы.

Преимущества
  • Возможность более точного подбора мощности двигателя для электропривода.
  • Электрический мотор менее пожароопасен в отличие от других типов двигателей.
  • Приводы дают возможность быстрого пуска и остановки механизма, его плавного торможения.
  • Нет необходимости в специальных регуляторах питания для электродвигателя. Все процессы происходят в автоматическом режиме.
  • Приводы дают возможность подбора мотора, свойства которого лучше других моделей сочетаются с характеристиками агрегата.
  • С помощью электрического привода можно плавно регулировать обороты механизма в определенных пределах.
  • Электродвигатель может преодолеть большие и долговременные перегрузки.
  • Электропривод дает возможность получения максимальной скорости и производительности рабочего механизма.
  • Электродвигатель дает возможность экономить электричество, а при определенных условиях даже генерировать ее в сеть.
  • Полная и простая автоматизация установок и механизмов возможна только с помощью электроприводов.
  • КПД электромоторов имеет наибольший показатель по сравнения с другими моделями двигателей.
  • Моторы производят с повышенной уравновешенностью. Это дает возможность встраивания их в механизмы машин, делать менее массивным фундамент.

Инновационные электрические приводы все автоматизированы. Системы управления приводом дают возможность рационального построения технологических процессов, увеличить производительность и эффективность труда, оптимизировать качество продукции и уменьшить ее цену.

Технические требования

К любым техническим механизмам и агрегатам предъявляются определенные требования технического плана. Не стали исключением и электроприводы. Рассмотрим основные предъявляемые к ним требования.

Надежность

В соответствии с этим требованием привод должен исполнять определенные функции и заданных условиях в течение некоторого интервала времени, с расчетной вероятностью работы без возникновения неисправностей.

При невыполнении этих требований остальные свойства оказываются бесполезными. Надежность может значительно отличаться в зависимости от характера работы. В некоторых механизмах не требуется долгого времени работы, однако отказ механизма не должен иметь место. Такой пример можно найти в военной промышленности. И другой пример, где наоборот, время службы должно быть большим, а отказ устройства вполне возможен, и не приведет к серьезным последствиям.

Точность

Это требование связано с отличием показателей от заданных. Они не могут превышать допустимые величины. Электроприводы должны обеспечивать перемещение рабочего элемента на определенный угол или за некоторое время, а также поддерживать на определенном уровне скорость, ускорение или момент вращения.

Быстродействие

Это качество привода обеспечивает быструю реакцию на разные воздействия управления. Быстродействие связано с точностью.

Качество

Такая характеристика обеспечивает качество процессов перехода, исполнение определенных закономерностей их выполнения. Качественные требования создаются вследствие особенностей работы машин с электроприводами.

Энергетическая эффективность

Любые производственные процессы преобразования и передачи имеют потери энергии. Наиболее важным это качество стало в применении электроприводов механизмов, приводах значительной мощности, долгим режимом эксплуатации. Эффективность использования энергии определяется КПД.

Совместимость

Электрические приводы должны совмещаться с работой аппаратуры, в которой они применяются, с их системой снабжения электроэнергией, информационными данными, а также с рабочими элементами. Наиболее остро стоит требование совместимости электроприводов для медицинской и бытовой техники, в радиотехнике.

Что входит в состав электропривода

Электрический привод (сокращённо — электропривод) — это электромеханическая система для приведения в движение исполнительных механизмов рабочих машин и управления этим движением в целях осуществления технологического процесса.

Современный электропривод — это совокупность множества электромашин, аппаратов и систем управления ими. Он является основным потребителем электрической энергии (до 60 %) и главным источником механической энергии в промышленности.

Определение по ГОСТу Р 50369-92 [1] Электропривод – электромеханическая система, состоящая из преобразователей электроэнергии, электромеханических и механических преобразователей, управляющих и информационных устройств и устройств сопряжения с внешними электрическими, механическими, управляющими и информационными системами, предназначенная для приведения в движение исполнительных органов рабочей машины и управления этим движением в целях осуществления технологического процесса.

Как видно из определения, исполнительный орган в состав привода не входит. Однако, авторы авторитетных учебников [2] [3] включают исполнительный орган в состав электропривода. Это противоречие объясняется тем, что при проектировании электропривода необходимо учитывать величину и характер изменения механической нагрузки на валу электродвигателя, которые определяются параметрами исполнительного органа. При невозможности реализации прямого привода электродвигатель приводит исполнительный органа в движение через кинематическую передачу. КПД, передаточное число и пульсации, вносимые кинематической передачей также учитываются при проектировании электропривода.

Функциональная схема

  • Регуляторы (Р) предназначен для управления процессами, протекающими в электроприводе.
  • Электрический преобразователь (ЭП) предназначен для преобразования электрической энергии сети в регулируемое напряжение постоянного или переменного тока.
  • Электромеханический преобразователь (ЭМП) — двигатель, предназначен для преобразования электрической энергии в механическую.
  • Механический преобразователь (МП) может изменять скорость вращения двигателя, а ткаже характер движения (с вращательного на вращательное или с вращательного на поступательное).
  • Упр — управляющие воздействие.
  • ИО — исполнительный орган.

Функциональные части:

  • Силовая часть или электропривод с разомкнутой системой регулирования;
  • Механическая часть;
  • Система управления электропривода.

Характеристики привода

Статические характеристики

Под статическими характеристиками чаще всего подразумеваются электромеханическая и механическая характеристика.

Механическая характеристика

Механическая характеристика — это зависимость угловой скорости вращения вала к от электромагнитного момента M (или от момента сопротивления Mc). Механические характеристики являются очень удобным и полезным инструментом при анализе статических и динамических режимов электропривода.[4]

Электромеханическая характеристика двигателя

Электромеханическая характеристика — это зависимость угловой скорости вращения вала W от тока I.

Виды электроприводов

  • Нерегулируемые, простейшие, предназначенные для пуска и остановки двигателя, работающие в односкоростном режиме.
  • Регулируемые, допускающие изменение частоты вращения и управление пуском и торможением электродвигателя для заданного технологического процесса. Способ регулирования зависит от типа двигателя. Так, для машин переменного тока применимо управление частотой, током в роторе, переключением пар полюсов статора. Для коллекторных машин применимо регулирование напряжением.
  • Неавтоматизированные
  • Автоматизированные
  • Линейные — для частных случаев.
  • Вращательные — наиболее распространённый тип. Чаще всего линейное перемещение получают механическими преобразователями вращательного движения двигателя.

Подбор электродвигателя

Качество работы современного электропривода во многом определяется правильным выбором используемого электрического двигателя, что в свою очередь обеспечивает продолжительную надёжную работу электропривода и высокую эффективность технологических и производственных процессов в промышленности, на транспорте, в строительстве и других областях.

При выборе электрического двигателя для привода производственного механизма руководствуются следующими рекомендациями:

  • Исходя из технологических требований, производят выбор электрического двигателя по его техническим характеристикам (по роду тока, номинальным напряжению и мощности, частоте вращения, виду ме ханической характеристики, продолжительности включения, перегрузочной способности, пусковым, регулировочным и тормозным свойствами др.), а также конструктивное исполнение двигателя по способу монтажа и крепления.
  • Исходя из экономических соображений, выбирают наиболее простой, экономичный и надёжный в эксплуатации двигатель, не требующий высоких эксплуатационных расходов и имею щий наименьшие габариты, массу и стоимость.
  • Исходя из условий окружающей среды, в которых будет работать двигатель, а также из требований безопасности работы во взрывоопасной среде, выбирают конструктивное исполнение двигателя по способу защиты.

Правильный выбор типа, исполнения и мощности электрического двигателя определяет не только безопасность, надёжность и экономичность работы и длительность срока службы двигателя, но и технико-экономические показатели всего электропривода в целом.

Алгоритм выбора электропривода

Принцип действия исполнительных механизмов не является ключевым фактором выбора электропривода, ключевыми в данном случае являются характеристики технологического процесса, которые должен обеспечить механизм. Этому же условию должен соответствовать и электропривод.

Например алгоритм выбора технических специалистов, обслуживающих технологические процессы, в которых исполнительным механизмом является трубопроводная арматура, будет следующим:

  • Выполняемая функция: запорная, дросселирующее регулирование, запорно-регулирующий режим, отсечка и т. д.
  • Пропускная способность.
  • Транспортируемая среда: абразивная, агрессивная химически, вязкая пульпа, огнеопасный газ, пар и т. д.
  • Время срабатывания арматуры (в зависимости от типа).
  • Высокая ремонтопригодность и длительный срок службы.

Следует иметь в виду, что не может быть универсального электропривода. В качестве примера, приведём средний медеплавильный цех: цех имеет несколько анодных печей, печи работают в разных режимах: загрузка, плавление, восстановление, окисление и это неполный перечень. Требуемые характеристики механизмов для этих режимов различны, на каждом процессе бывает задействована различная группа приводной арматуры. Диаметры разнятся от 200 до 900 мм, различны и подающиеся среды — мазут, газ, воздух и проч., температурные режимы так же изменяются.

С другой стороны, конструкция электропривода может быть модульной, части привода могут свободно меняться, причём блоки разных исполнений должны быть по возможности унифицированы и легко заменяться.

Для некоторых механизмов, работающих в повторно-кратковременном режиме (краны, лифты), большую часть рабочего цикла двигатель работает на естественной характеристике и только относительно небольшое время работает на регулировочной характеристике, обычно на пониженной частоте вращения. В этом случае потери электроэнергии на регулировочной характеристике сравнительно невелики, так как мало время работы на ней. Поэтому здесь можно применять простые и дешёвые способы регулирования, даже если они вызывают повышенные потери мощности в обмотках.

Основными типами электродвигателей, которые используются для привода производственных механизмов с регулируемой скоростью движения рабочего органа, являются двигатели постоянного тока и асинхронные с короткозамкнутым или фазным ротором. Наиболее просто требуемые искусственные характеристики получаются у двигателей постоянного тока, поэтому до недавнего времени они преимущественно и находили применение для регулируемых электроприводов. С другой стороны, асинхронные двигатели, уступая двигателям постоянного тока по возможностям регулирования частоты вращения, по сравнению с последними проще в изготовлении и эксплуатации и имеют относительно меньшие массу, размеры и стоимость. Именно эти отличительные свойства асинхронных двигателей определили их главенствующее использование в промышленном нерегулируемом электроприводе. [5] В настоящее время двигатели постоянного тока вытесняются асинхронными двигателями с преобразователями частоты, основными производителями которых являются ABB, Schneider, Siemens, Lenze. Число выпускаемых двигателей постоянного тока составляет лишь 4-5 % числа двигателей переменного тока.

Современные российские производители и поставщики электроприводов

Проблема регулирования скорости движения машин и механизмов с целью экономии электроэнергии решалась в последние десятилетия в основном с помощью регулируемых электроприводов. Причём, если ещё в 70-80-х годах преобладающими были регулируемые электроприводы постоянного тока, то в настоящее время они повсеместно вытесняются регулируемыми электроприводами переменного тока, как правило, с асинхронными электродвигателями с короткозамкнутым ротором. Объясняется это достижениями микроэлектроники, позволяющими реализовать небольшими аппаратными затратами довольно сложные алгоритмы управления электродвигателем переменного тока, который в общем случае предпочтительнее двигателя постоянного тока по надёжности, массе, габаритам и стоимости.

Некоторые из производителей в России и СНГ:

  • ОАО «Электропривод» (г.Киров)
  • ООО «Электропривод» (Украина, Запорожье),
  • ОАО Завод «Преобразователь» (Украина, Запорожье),
  • ОАО «Запорожский электроаппаратный завод»,
  • НИПТИЭМ,
  • ОАО «Владимир»,
  • ООО «АВВИ»,
  • ООО «Двигатель»,
  • ЗАО Томск,
  • ООО «Кранприборсервис» на базе СКТБ Башенного Краностроения (СКТББК г. Москва),
  • ООО НПФ «Ирбис» (г. Новосибирск),
  • ООО «ЧЭАЗ — ЭЛПРИ» (дочернее предприятие ОАО «Чебоксарский электроаппаратный завод»),
  • НТЦ «Приводная техника» (г. Челябинск),
  • ЗАО «ЭРАСИБ» (г. Новосибирск)
  • НПП «Уралэлектра» (г. Екатеринбург).

Электрический привод и его структура

Каждый электрический привод содержит в себе три составные части, а именно:

Соответственно, чтобы технологический механизм четко выполнял свои задачи, все его составляющие должны осуществлять некоторые перемещения, которые могут выполняться при помощи привода.

Что такое электрический привод – это главный структурный элемент всех технологических агрегатов, главной функцией которого является обеспечение необходимых перемещений исполняющего органа в соответствии с заданным законом. Для наглядности можно представить современный технологический агрегат в виде целостного комплекса приводов, которые взаимодействуют друг с другом и соединены единой системой управления, гарантирующей нужные перемещения по самым разным траекториям.

С развитием промышленности электропривод занял как на производстве, так и в быту лидирующее место по количеству двигателей и общей установленной мощности.

В каждом электрическом приводе может быть выделена силовая часть (по ней энергия двигается от электродвигателя к исполнительным органам), а также система управления (обеспечивает нужное перемещение по указанному закону). Кроме этого, оно включает три устройства: управляющее, передаточное и преобразовательное.

Передаточное устройство включает муфты соединения, механические передачи, которые нужны для отдачи исполняющему оборудованию энергии механической, которую вырабатывает электродвигатель.

Преобразователь предназначен для того, чтобы управлять потоком электроэнергии, которая поступает из сети с целью урегулирования работы электродвигателя. Он является энергетической частью системы управления.

Управляющий механизм являет собой слаботочную информационную часть управляющей системы, которая собирает и обрабатывает поступающую информацию. Данная информация содержит данные о текущем состоянии системы, а также сигналов, которые поступают к электродвигательным агрегатам.

В настоящее время электроприводы совершенствуются в плане увеличения их надежности, долговечности, производительности, экономичности, высокоэффективной работы, уменьшения массогабаритных и удельных свойств. На каждом из этапов усовершенствования техники получение необходимых результатов сопровождается развитием теоретического аспекта вопроса.

По разным параметрам различают различные типы электроприводов:

По типу движения: поступательного, вращательного реверсивного и однонаправленного движения, а кроме этого возвратно-поступательного.

По типу механического передаточного аппарата: безредукторный и редукторный.

По методу передачи энергии механического типа: взаимосвязанные, индивидуальные и групповые.

По методу регулирования скорости, а также положения исполняющего органа: следящий, позиционный, регулируемый и нерегулируемый в плане скорости, адаптивный, программно-управляемый.

По типу электрического преобразовательного агрегата

Исполнительный механизм с электроприводом – это устройство, которое предназначено для смещения рабочей детали, соответственно с сигналами, которые поступают от управляющего агрегата.

В качестве рабочих деталей могут выступать клапаны, шиберы, задвижки, дроссельные заслонки, направляющие аппараты любого рода, которые могут осуществлять изменения в количестве поступающего на объект управления рабочего вещества или энергии.

Рабочие органы возможно перемещать и вращательно, и поступательно, в границах некоторого количества оборотов либо одного. При их участии выполняется прямое воздействие на субъект, которым управляет. В большей части случаев исполнительный механизм с электроприводом включает в себя: редуктор, сам электропривод, датчик показателя положения конечных выключателей, узел обратной связи.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Ранее на эту тему: Электропривод

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Электрический привод

Электрический привод (сокращённо — электропривод) — это электромеханическая система для приведения в движение исполнительных механизмов рабочих машин и управления этим движением в целях осуществления технологического процесса.
Современный электропривод — это совокупность множества электромашин, аппаратов и систем управления ими. Он является основным потребителем электрической энергии (до 60 %) [1] и главным источником механической энергии в промышленности.

Определение по ГОСТу Р 50369-92 [2] Электропривод – электромеханическая система, состоящая из преобразователей электроэнергии, электромеханических и механических преобразователей, управляющих и информационных устройств и устройств сопряжения с внешними электрическими, механическими, управляющими и информационными системами, предназначенная для приведения в движение исполнительных органов рабочей машины и управления этим движением в целях осуществления технологического процесса.

Как видно из определения, исполнительный орган в состав привода не входит. Однако, авторы авторитетных учебников [1] [3] включают исполнительный орган в состав электропривода. Это противоречие объясняется тем, что при проектировании электропривода необходимо учитывать величину и характер изменения механической нагрузки на валу электродвигателя, которые определяются параметрами исполнительного органа. При невозможности реализации прямого привода электродвигатель приводит исполнительный орган в движение через кинематическую передачу. КПД, передаточное число и пульсации, вносимые кинематической передачей также учитываются при проектировании электропривода.

Содержание

Функциональная схема

  • Регулятор (Р) предназначен для управления процессами, протекающими в электроприводе.
  • Электрический преобразователь (ЭП) предназначен для преобразования электрической энергии сети в регулируемое напряжение постоянного или переменного тока.
  • Электромеханический преобразователь (ЭМП) — двигатель, предназначен для преобразования электрической энергии в механическую.
  • Механический преобразователь (МП) может изменять скорость вращения двигателя, а также характер движения (с поступательного на вращательное или с вращательного на поступательное).
  • Упр — управляющее воздействие.
  • ИО — исполнительный орган.
  • Силовая часть или электропривод с разомкнутой системой регулирования.
  • Механическая часть.
  • Система управления электропривода.

Характеристики привода

Статические характеристики

Под статическими характеристиками чаще всего подразумеваются электромеханическая и механическая характеристика.

Механическая характеристика

Механическая характеристика — это зависимость угловой скорости вращения вала от электромагнитного момента M (или от момента сопротивления Mc). Механические характеристики являются очень удобным и полезным инструментом при анализе статических и динамических режимов электропривода. [1]

Электромеханическая характеристика двигателя

Электромеханическая характеристика — это зависимость угловой скорости вращения вала ω от тока I.

Динамическая характеристика

Динамическая характеристика электропривода — это зависимость между мгновенными значениями двух координат электропривода для одного и того же момента времени переходного режима работы.

Классификация электроприводов [4]

По количеству и связи исполнительных, рабочих органов.

  • Индивидуальный, в котором рабочий исполнительный орган приводится одним самостоятельным двигателем, приводом.
  • Групповой, в котором один двигатель приводит в действие исполнительные органы РМ или несколько органов одной РМ.
  • Взаимосвязанный, в котором два или несколько ЭМП или ЭП электрически или механически связаны между собой с целью поддержания заданного соотношения или равенства скоростей, или нагрузок, или положения исполнительных органов РМ.
  • Многодвигательный, в котором взаимосвязанные ЭП, ЭМП обеспечивают работу сложного механизма или работу на общий вал.
  • Электрический вал, взаимосвязанный ЭП, в котором для постоянства скоростей РМ, не имеющих механических связей, используется электрическая связь двух или нескольких ЭМП.

По типу управления и задаче управления.

  • Автоматизированный ЭП, управляемый путём автоматического регулирования параметров и величин.
  • Программно-управляемый ЭП, функционирующий через посредство специализированной управляющей вычислительной машины в соответствии с заданной программой.
  • Следящий ЭП, автоматически отрабатывающий перемещение исполнительного органа РМ с заданной точностью в соответствии с произвольно меняющимся сигналом управления.
  • Позиционный ЭП, автоматически регулирующий положение исполнительного органа РМ.
  • Адаптивный ЭП, автоматически избирающий структуру или параметры устройства управления с целью установления оптимального режима работы.

По характеру движения.

  • ЭП с вращательным движением.
  • Линейный ЭП с линейными двигателями.
  • Дискретный ЭП с ЭМП, подвижные части которого в установившемся режиме находятся в состоянии дискретного движения.

По наличию и характеру передаточного устройства.

  • Редукторный ЭП с редуктором или мультипликатором.
  • Электрогидравлический с передаточным гидравлическим устройством.
  • Магнитогидродинамический ЭП с преобразованием электрической энергии в энергию движения токопроводящей жидкости.

По роду тока.

  • Переменного тока.
  • Постоянного тока.

По степени важности выполняемых операций.

  • Главный ЭП, обеспечивающий главное движение или главную операцию (в многодвигательных ЭП).
  • Вспомогательный ЭП.

Подбор электродвигателя

Качество работы современного электропривода во многом определяется правильным выбором используемого электрического двигателя, что в свою очередь обеспечивает продолжительную надёжную работу электропривода и высокую эффективность технологических и производственных процессов в промышленности, на транспорте, в строительстве и других областях.

При выборе электрического двигателя для привода производственного механизма руководствуются следующими рекомендациями:

  • Исходя из технологических требований, производят выбор электрического двигателя по его техническим характеристикам (по роду тока, номинальным напряжению и мощности, частоте вращения, виду ме­ханической характеристики, продолжительности включения, перегрузочной способности, пусковым, регулировочным и тормозным свойствами др.), а также конструктивное исполнение двигателя по способу монтажа и крепления.
  • Исходя из экономических соображений, выбирают наиболее простой, экономичный и надёжный в эксплуатации двигатель, не требующий высоких эксплуатационных расходов и имею­щий наименьшие габариты, массу и стоимость.
  • Исходя из условий окружающей среды, в которых будет работать двигатель, а также из требований безопасности работы во взрывоопасной среде, выбирают конструктивное исполнение двигателя по способу защиты.

Правильный выбор типа, исполнения и мощности электрического двигателя определяет не только безопасность, надёжность и экономичность работы и длительность срока службы двигателя, но и технико-экономические показатели всего электропривода в целом.

Алгоритм выбора электропривода

Для некоторых механизмов, работающих в повторно-кратковременном режиме (краны, лифты), большую часть рабочего цикла двигатель работает на естественной характеристике и только относительно небольшое время работает на искусственной характеристике, обычно на пониженной частоте вращения. В этом случае потери электроэнергии на искусственной характеристике сравнительно невелики, так как мало время работы на ней. Поэтому здесь можно применять простые и дешёвые способы регулирования, даже если они вызывают повышенные потери мощности в обмотках. Поэтому, благодаря простоте реализации метода регулирования скорости путём изменения сопротивления в цепи ротора, такие электроприводы нашли наиболее широкое применение в крановых системах, и сейчас составляют основную часть находящихся в эксплуатации и выпускаемых промышленностью электроприводов. В то же время растет число электроприводов с плавным регулированием скорости, в первую очередь к ним относятся электроприводы по системам “тиристорный преобразователь – двигатель постоянного тока” (ТП-Д) и “преобразователь частоты – асинхронный двигатель” (ПЧ-АД).

Основными типами электродвигателей, которые используются для привода производственных механизмов с регулируемой скоростью движения рабочего органа, являются двигатели постоянного тока и асинхронные с короткозамкнутым или фазным ротором. Наиболее просто требуемые искусственные характеристики получаются у двигателей постоянного тока, поэтому до недавнего времени [когда?] они преимущественно и находили применение для регулируемых электроприводов. С другой стороны, асинхронные двигатели, уступая двигателям постоянного тока по возможностям регулирования частоты вращения, по сравнению с последними проще в изготовлении и эксплуатации и имеют относительно меньшие массу, размеры и стоимость. Именно эти отличительные свойства асинхронных двигателей определили их главенствующее использование в промышленном нерегулируемом электроприводе. В настоящее время двигатели постоянного тока вытесняются короткозамкнутыми асинхронными двигателями с преобразователями частоты, а также синхронными двигателями с постоянными магнитами на роторе и шаговыми. Число выпускаемых двигателей постоянного тока составляет лишь 4-5 % числа двигателей переменного тока и неуклонно снижается [источник не указан 632 дня] .

Особенности применения электропривода в системе вентиляции

Устанавливается электропривод для управления воздушными заслонками. Конструкция устройства, используемого для такого типа оснащения (коммерческого, промышленного и бытового назначения), отличается следующими характеристиками:

  • установка выполняется на вал заслонки (предусмотрены специальные фиксационные пазы);
  • с помощью фиксатора выполняется вращение, обусловливающее работу прибора;
  • когда достигается крайнее положение в работе, прибор выключается для предотвращения возникновения ситуации, когда нагрузка превышена и есть риск серьезных поломок;
  • для настройки угла поворота предназначены механические упоры.

Зубчатый редуктор выводится из зацепления при нажатии и удержании кнопки на корпусе привода. Это необходимо для ручного управления редуктором на случай, если подача электричества прекращена. Такая возможность предусмотрена в большинстве моделей.

Что такое электропривод?

Электропривод – это комплекс электромеханических, управляющих и информационных устройств, применяемых для преобразования электрической энергии и приведения в движение исполнительных механизмов рабочего оборудования при осуществлении необходимого процесса. В нашем случае рабочее оборудование – это система вентиляции и кондиционирования.

Также электроприводы применяются на производстве в технических устройствах, в разных направлениях деятельности. Процесс управления системой может отличаться, как и конструкция, конфигурация, возлагаемые на устройство задачи – все зависит от того, какой результат должен быть получен.

Конструкция и состав электропривода

Стандартный ряд элементов, которые также могут быть дополнены другими механизмами в зависимости от сферы применения устройства, мощности и масштабов системы вентиляции, одинаковый практически всегда.

Конструкция электропривода:

  • Регулятор. Предусмотрен для управления процессами, которые происходят внутри устройства.
  • Преобразователь электрической энергии. В работе используется напряжение заданного тока, а также выполняется его регулировка. За эту функцию отвечает преобразователь электричества.
  • Двигатель. Центральный элемент. Он отвечает за преобразование электрической энергии в механическую на этапе ее подведения к приводу.
  • Механический преобразователь. Контролирует и поддерживает определенную скорость вращения вала двигателя.

Каждый из элементов, составляющих конструкцию электропривода, обеспечивает выполнение определенных задач, что в комплексе создает условия для функционирования устройства.

Устройство внешне может отличаться в зависимости от модели и производителя. Элементы системы защищены корпусом и подключены между собой. Функционально электропривод классифицируется по следующим направлениям: механическая и силовая части, система управления.

Разновидности электроприводов

Подбирают устройства, отталкиваясь от назначения, особенностей эксплуатации, возможности установки, функционала и технических параметров. При монтаже в рамках обустройства систем вентиляции и кондиционирования акцент ставится на соответствие электропривода сечению.

Виды устройств:

  • модели с постоянным или переменным током;
  • линейный привод, дискретный или с вращательным движением;
  • вид передаточного механизма может быть разным – классифицируют устройства так: электрогидравлический, магнитогидродинамический, редукторный);
  • по важности применения привод бывает главным, вспомогательным, предназначенным для передач;
  • модели управляются с помощью программного обеспечения, в автоматическом режиме, могут быть адаптивными, позиционными, следящими;
  • по количеству рабочих органов тоже встречаются разные виды: групповые, взяимосвязанные, индивидуальные, с несколькими двигателями, электрический вал.

Каждый из указанных параметров может сочетаться с другими. Подбирают приводы, соответствующие условиям функционирования системы.

Преимущества электроприводов

Приводные системы бывают разными, но электроприводы отличаются рядом весомых преимуществ:

  • простота конструкции;
  • мощность бывает низкой, средней и высокой, но каждая из этих групп варьируется в широких диапазонах, поэтому подбирать устройства удается для самых разных вентиляционных и кондиционирующих систем;
  • скорость вращения вала двигателя может меняться;
  • возможность работы в автоматическом режиме, когда вмешательство в управление не требуется;
  • высокая скорость работы, отсутствие перебоев;
  • запустить можно в любой момент без дополнительных условий;
  • квалифицированные мастера для монтажа оборудования не требуются, но часто устанавливаются приводы на этапе обустройства вентиляционных систем;
  • удаленное управление (есть не во всех моделях);
  • наличие реверсного вращения;
  • в большинстве точек, где актуален монтаж вентиляционных систем, есть электричество, поэтому монтаж, подключение и эксплуатация электроприводов возможны практически везде;
  • надежность;
  • экономичность;
  • хороший КПД.

Отдельно можно отметить экологичность – устройства производятся без применения опасных составов.

Область применения электроприводов

Используются эти устройства в разных направлениях деятельности. Их монтируют в рамках обустройства систем вентиляции, кондиционирования, устанавливают в станки, промышленные центры. Сфера применения настолько широкая, что есть электроприводы исключительно для производственных масштабов – мощное оборудование, а есть более слабые модели, ориентированные на бытовое применение, обустройство офисных площадей, магазинов.

Электроприводы ставят для обеспечения управленческих процессов в оборудовании, для преобразования энергии. Это основной источник механической силы.

Практика применения электроприводов в вентиляционных системах

Это устройство устанавливается для регулировки положения заслонки. Например, когда дополнительная вентиляция включается периодически или нужно изменить мощность ее текущей работы, это удается сделать с помощью электрического привода.

Также техника выполняет контроль задвижек, клапанов, заслонок. Работает в вентиляционных и кондиционирующих системах.

ЭЛЕКТРОПРИВОД. ОБЩИЕ СВЕДЕНИЯ

Большое число реализуемых с помощью электропривода технологических процессов определяет многообразие уже действующих и вновь создаваемых электроприводов. Между собой они различаются назначением, степенью автоматизации, характером движения двигателя, используемой элементной базой и многими другими признаками, по которым осуществляется их классификация. История электропривода показывает процесс его развития и совершенствования.

НАЗНАЧЕНИЕ И КЛАССИФИКАЦИЯ ЭЛЕКТРОПРИВОДОВ

Для приведения в движение исполнительных органов рабочих машин и механизмов и управления этим движением электропривод (ЭП) включает в себя совокупность взаимосвязанных и взаимодействующих друг с другом электротехнических, электромеханических и механических элементов и устройств. Такая электромеханическая система и получила название электрического привода, общая структурная схема которого приведена на рис. 1.1.

Основным элементом ЭП является электрический двигатель (ЭД), который вырабатывает механическую энергию (МЭ) за счет потребляемой от источника электроэнергии (ИЭЭ) электрической энергии (ЭЭ). В некоторых режимах работы ЭП электродвигатель осуществляет и обратное преобразование энергии, получая механическую энергию от исполнительных органов (ИО) и работая при этом в генераторном режиме.

От электродвигателя механическая энергия подается на исполнительный орган (ИО) рабочей машины (РМ) через механическую передачу (МП). В некоторых случаях ИО непосредственно соединяется с ЭД, что соответствует так называемому безредукторному ЭП.

Рис. 1.1. Структурная схема электропривода

Электрическая энергия поступает в ЭП от источника электроэнергии через преобразователь электрической энергии (Пр).

Функции управления и автоматизации работы ЭП осуществляются устройством управления (УУ). Это устройство вырабатывает сигнал управления U с использованием сигнала задания (уставки) U , задающего характер движения исполнительного органа, дополнительных сигналов U (сигналов обратных связей), дающих информацию о ходе технологического процесса, характере движения исполнительного органа и работе отдельных элементов ЭП, а также сигналов системы защиты, блокировок и сигнализации U . Сигналы U с и U поступают от соответствующих датчиков переменных ЭП и технологического оборудования. Для преобразования этих сигналов в состав устройства управления входят устройства сопряжения и обработки поступающей информации. Преобразователь Пр вместе с устройством управления УУ образуют систему управления СУ электропривода.

Итак, электрическим приводом называется электромеханическая система, состоящая из взаимодействующих электрических, электромеханических и механических преобразователей, а также управляющих и информационных устройств и устройств сопряжения, предназначенная для приведения в движение исполнительных органов рабочих машин и управления этим движением в целях осуществления технологического процесса [4].

Назначение указанных на рис. 1.1 элементов состоит в следующем.

Электродвигатель (ЭД) — электромеханический преобразователь, предназначенный для преобразования электрической энергии в механическую, в некоторых режимах работы ЭП — для обратного преобразования энергии. В его качестве используются двигатели постоянного тока с различными видами возбуждения, асинхронные и синхронные двигатели, шаговый двигатель, вентильный и вентильно-индукторный двигатели, двигатели с катящимися и волновыми роторами, редукторные и другие типы двигателей.

Преобразователь электроэнергии (Пр) — электротехническое устройство, предназначенное для преобразования электрической энергии одних параметров или показателей в электроэнергию других параметров или показателей и управления процессом преобразования энергии. Примерами этих устройств являются выпрямитель, преобразователь частоты, регуляторы напряжения постоянного и переменного тока, инверторы, импульсные преобразователи напряжения.

Механическая передача (МП) — механический преобразователь, предназначенный для передачи механической энергии от электродвигателя к исполнительному органу рабочей машины и согласования вида и скоростей их движения. В ее качестве используются редуктор, волновая передача, передача винт — гайка, реечная, цепная и ременная передачи, кривошипно-шатунный механизм и ряд других механических устройств.

Управляющее устройство (УУ) — совокупность элементов и устройств, предназначенная для формирования управляющих воздействий в ЭП и обеспечивающая взаимодействие ЭП с сопредельными системами и его отдельных частей. В его составе могут использоваться цифровые и аналоговые регуляторы, микропроцессорные средства управления, реле различного типа, устройства памяти, логические устройства, драйверы, цифроаналоговые (ЦАП) и аналого- цифровые (АЦП) преобразователи, разнообразные датчики переменных ЭП и технологического процесса.

Система управления ЭП (СУ) — совокупность преобразователя электроэнергии и устройства управления, предназначенная для управления электромеханическим преобразованием энергии с целью обеспечения заданного движения исполнительного органа рабочей машины.

Рабочая машина (РМ) — машина, осуществляющая изменение формы, свойств, состояния и положения предметов труда.

Исполнительный орган рабочей машины (ПО) — движущийся элемент рабочей машины, выполняющий технологическую операцию.

ЭП классифицируются по характеру движения, типам электродвигателя и силового преобразователя, количеству используемых электродвигателей, структурам и технической реализации систем управления, наличию или отсутствию механической передачи и т.д. Подробно классификация ЭП приведена в 14], здесь же выделим только наиболее важные ее составляющие.

  • 1. По соотношению числа двигателей и исполнительных органов рабочих машин различают:
    • • групповые ЭП, обеспечивающие движение исполнительных органов нескольких рабочих машин или движение нескольких исполнительных органов одной рабочей машины;
    • • индивидуальные ЭП, обеспечивающие движение одного исполнительного органа одной рабочей машины;
    • • взаимосвязанные ЭП, состоящие из двух или более двигателей или механически связанных между собой ЭП, при работе которых поддерживается заданное соотношение их скоростей и (или) нагрузок, и (или) положения исполнительных органов рабочих машин. При наличии механической связи между ЭП взаимосвязанный ЭП называется многодвигательным, при наличии электрической связи — электрическим валом.
  • 2. По характеристике движения исполнительных органов рабочих машин различают:
    • • ЭП вращательного движения, обеспечивающие вращательное движение исполнительных органов рабочих машин;
    • • ЭП поступательного движения, обеспечивающие поступательное движение исполнительных органов рабочих машин;
    • • ЭП возвратно-поступательного движения, обеспечивающие возвратно-поступательное (вибрационное) движение исполнительных органов рабочих машин;
    • • ЭП непрерывного движения, обеспечивающие непрерывное движение исполнительных органов рабочих машин;
    • • ЭП дискретного движения, обеспечивающие дискретное перемещение исполнительных органов рабочих машин;
    • • реверсивные ЭП, обеспечивающие движение исполнительных органов рабочих машин в любом из двух противоположных направлений;
    • • нереверсивные ЭП, обеспечивающие движение исполнительных органов рабочих машин только в одном направлении;
    • • многокоординатные ЭП, обеспечивающие движение исполнительных органов рабочих машин по двум или более пространственным координатам;
    • • моментный ЭП, обеспечивающий заданный момент или усилие на исполнительных органах рабочих машин;
    • • позиционный ЭП, обеспечивающий перемещение и установку исполнительных органов рабочих машин в заданное положение;
    • • многоскоростные ЭП, обеспечивающие движение исполнительных органов рабочих машин с любой из двух или более фиксированных скоростей;
    • • регулируемые ЭП, обеспечивающие управляемое изменение координат движения исполнительных органов рабочих машин;
    • • нерегулируемые ЭП, не обеспечивающие управляемое изменение координат движения исполнительных органов рабочих машин;
    • • ЭП согласованного движения, обеспечивающие согласованное движение двух или более исполнительных органов рабочих машин.
  • 3. По характеристике и структуре системы управления различают:
    • • неавтоматизированные ЭП, операции по управлению которыми выполняет оператор;
    • • автоматизированные ЭП, все или часть операций управления в которых выполняют устройства управления;
    • • следящие ЭП, обеспечивающие перемещение исполнительных органов рабочих машин в соответствии с произвольно изменяющимся входным задающим сигналом;
    • • ЭП с программным управлением, обеспечивающие перемещение исполнительных органов рабочих машин в соответствии с заданной программой;
    • • адаптивные ЭП, автоматически избирающие структуру и (или) параметры своей системы управления при изменении возмущающих воздействий;
    • • ЭП с регулированием энергетических показателей, обеспечивающие заданный закон изменения одного или нескольких энергетических показателей работы;
    • • ЭП с разомкнутой (замкнутой) системой управления, в которых отсутствуют (имеются) обратные связи по регулируемым координатам и (или) по возмущающему воздействию.
  • 4. По технической (аппаратной) реализации элементов ЭП различают:
    • • ЭП постоянного (переменного) тока, содержащие двигатели постоянного (переменного) тока;
    • • тиристорные (транзисторные) ЭП, содержащие тиристорные (транзисторные) преобразователи электроэнергии;
    • • система «генератор — двигатель» (система «статический преобразователь — двигатель») — ЭП, в состав которых входят элек- тромашинные (статические) преобразователи электроэнергии;
    • • ЭП с релейно-контакторным (бесконтактным) управлением, система управления которыми реализована на основе релейноконтакторной (бесконтактной) аппаратуры;
    • • ЭП с мехатронным модулем, объединяющим двигатель с электронными и электромеханическими компонентами управления, диагностики и защиты;
    • • редукторный (безредукторный) ЭП, механическая передача которых содержит (не содержит) редуктор;
    • • маховичный ЭП, механическая передача которых содержит маховик;
    • • дифференциальный ЭП, представляющий собой многодвигательный ЭП, в котором скорость и момент двигателей алгебраически суммируются с помощью механического дифференциала;
    • • ЭП с тормозным устройством (управляемой муфтой), механическая передача которых содержит тормозное устройство (управляемую муфту).
Понравилась статья? Поделиться с друзьями:
Добавить комментарий