Ионистор что это такое

Ионистор — устройство, применение, технические параметры

Бывают ситуации, когда реализовать автономное питание на основе одной аккумуляторной батареи не представляется возможным из-за образования больших кратковременных токов. В этом случае совместно использовался высоковольтный конденсатор большой емкости, пока не стали применять ионистор вместо аккумулятора или одновременно с ним.

В работе этого класса приборов заложена технология, благодаря которой создается двойной электрический слой (EDLC), этим они выгодно отличаются от устройств, где для накопления заряда эксплуатируются химические реакции, как обратимые (аккумулятор), так и необратимые (батарея).

Несмотря на то, что ионисторы появились относительно недавно, их изготовление налажено многими производителями как в нашей стране, так и за рубежом, эти радиодетали выпускают такие компании, как: Palm, Epcos, Elna и т.д.

Ионисторы Maxwell

Внутренне устройство

Ионисторы тем отличаются от конденсаторов, что их конструкция не предполагает использование диэлектрика между электродами, при изготовлении последних подбираются вещества, с противоположным потенциалом заряда. Упрощенное устройство этих радиодеталей показано на рисунке.

Устройство классических ионисторов

Условные обозначения:

  • a, b – электроды;
  • с –сепаратор;
  • d – активированный уголь.

От того, какова площадь «обкладки» конденсатора, зависит его емкость, именно с этой целью в качестве электродов в устройствах используется активированный уголь или вспененный углерод, которые помещаются в электролит. Назначение сепаратора – не допустить короткое замыкание электродов.

В качестве электролита может выступать твердый или кристаллический раствор щелочи либо кислоты. Заметим, что в современных изделиях данный тип электролита не используется из-за своей высокой токсичности.

На рисунке ниже в качестве примера изображена конструкция ионисторов серии EN, изготовленных компанией Panasonic.

Конструкция серии EN

На рисунке обозначены:

  • a – электроды (в качестве материала выступает активированный уголь);
  • b, e – верхняя и нижняя часть корпуса;
  • с – сепаратор;
  • d – уплотнительный изолятор.

Параметры

Основные электрические характеристики ионисторов включают в себя:

  • емкость, для ее измерения используется единица Фарад (Ф);
  • внутреннее сопротивление (Ом);
  • максимальный ток разряда (А);
  • величина номинального напряжения (В)
  • параметры саморазряда и разряда, последний довольно важный параметр, поэтому приведем формулу, по которой можно произвести расчет времени разряда ионистора: где:

t – время разряда, измеряется в секундах (с);

С – емкость устройства (Ф);

V1, V2 – начальное и конечное значение диапазона напряжений, при которых проводилось тестирование;

I – величина тестового тока (А).

Положительные и отрицательные стороны

К числу безусловных преимуществ этих устройств относятся следующие качества:

  • разрядка и заряд устройства не занимает много времени, что позволяет их использовать в тех случаях, когда аккумуляторы установить не представляется возможным из-за долгой подзарядки;
  • по сравнению с аккумуляторными батареями у ионисторов значительно больше циклов полного заряда-разряда устройства;
  • чтобы произвести подзарядку, не понадобится специальное зарядное оборудование, следовательно, упрощается обслуживание;
  • радиодетали этого типа гораздо легче аккумуляторов и меньше их по габаритам;
  • широкий диапазон рабочей температуры – от -40 до 70С°;
  • срок эксплуатации во много раз больше, чем его имеют силовые конденсаторы и аккумуляторные батареи.

Как бы ни были хороши эти радиодетали, но у них есть и недостатки, которые несколько усложняют эксплуатацию, а именно:

  • относительно высокая цена на ионисторы приводит к тому, что использование их в технике ведет к ее удорожанию. Как утверждают специалисты, в ближайшем будущем эта проблема будет решена, благодаря развитию новых технологий;
  • низкие параметры номинального напряжения устройств, решением может служить последовательное соединение нескольких элементов (принцип такой же, как при подключении нескольких батареек). В этом случае потребуется установить шунт в виде резистора на каждый компонент;
  • превышение температурного режима (нагрев более 70С°) становится причиной выхода из строя;
  • данный тип радиодеталей не позволяет накапливать достаточно энергии, помимо этого они обладают небольшой энергетической плотностью (то есть не столь мощные, как аккумуляторы), что несколько сужает сферу их применения. Параллельное подключение нескольких элементов позволяет частично справиться с этой проблемой.

Отдельно следует заметить, что суперконденсаторы относятся к элементам, подключение которых требует, чтобы была соблюдена полярность. Нельзя допускать короткое замыкание устройства, поскольку оно станет причиной, из-за которой повысится температура, и радиоэлементу потребуется замена.

Применение

Сфера применения ионисторов довольно обширна, но наиболее часто они используются как аварийный или резервный блок питания для таймера или микросхем памяти в различных устройствах, начиная от телефонов и заканчивая музыкальными центрами, телевизорами, видеокамерами и т.д.

Видео: эффективность в применении ионистора

Делались и довольно экзотические эксперименты по применению суперконденсаторов, в частности, на их основе пытались создать гаусс оружие (электромагнитную пушку).

Типичная схема включения суперконденсаторов, как источников питания, показана на рисунке.

Схема подключения резервного питания

Обозначение на схеме:

U – подключение к основному источнику питания;

D1 – диод, не допускающий утечки заряда ионистора, когда отсутствует основное питание;

R1 – резистор, служит для двух целей:

  • ограничение тока зарядки;
  • исключает перегрузку основного источника питания во время включения напряжения;

C – резервный источник питания на базе ионистора;

Rn – сопротивление нагрузки.

Заметим, что без резистора (обозначение на схеме — R1) можно обойтись, если характеристики источника питания допускают кратковременное повышение тока нагрузки до 250 мА.

Помимо приведенного примера использования в быту, ионисторы могут применяться, чтобы подключить светодиод в маломощном фонарике, при этом зарядка может производиться от энергии солнечной батареи.

Приведем еще один распространенный пример использования данного устройства для запуска двигателя автомобиля. Схема подобной реализации показана на рисунке.

Схема: пусковое устройство для двигателя автомобиля

Данная схема может быть реализована на любом легковом автомобиле, где напряжение бортовой сети 12V, обозначения на рисунке:

  • 1,2, 3 – клеммы подключения (1 к положительному контакту АКБ, 2 – к отрицательному, 3 соединяется с замком зажигания);
  • Кс – замок зажигания;
  • B1 – АКБ автомобиля;
  • K1, K1.1 – контактор и его управляющий ключ;
  • С — суперконденсатор;
  • Rc – резистор, ограничивающий ток зарядки ионистора С.

В схеме используется суперконденсатор (маркировка: 12ПП-15/0,002), у которого следующие характеристики:

  • максимальное номинальное напряжение – 15В;
  • емкость – 216Ф;
  • величина внутреннего сопротивления – 0,0015 Ом;
  • номинальный ток – 2кА.

Перечисленных выше характеристик будет достаточно для запуска двигателя мощностью до 150 л.с. Время зарядки ионистора — не более 5 секунд, после включения стартера в течение первых нескольких секунд основная токовая нагрузка будет идти на суперконденсатор, поскольку внутренне сопротивление у АКБ больше.

Подобное пусковое устройство, в котором используется ионистор, можно купить готовое, но сделать своими руками обойдется значительно дешевле.

Ионистор или суперконденсатор: применение и принцип работы

  1. Что такое ионистор – сфера применения
  2. Как работает суперконденсатор
  3. Виды устройств
  4. Преимущества и недостатки

Сегодня широко распространены высокомощные приборы, которые потребляют в короткий промежуток времени большой объем электроэнергии.

Для такой техники не всегда удобно использовать батареи или аккумуляторы, поэтому источником энергии для них могут выступать суперконденсаторы или ионисторы. Они также могут использоваться вместо либо в комплексе с аккумуляторными батареями.

Что такое ионистор – сфера применения

В отличие от стандартных конденсаторов ионистор не имеет диэлектрика, разделяющего электроды.

Электроды в комплексе с сепаратором и рабочей жидкостью (электролитом) установлены в герметично запакованном корпусе, к которому припаиваются точки вывода с указанием полярности. Форма и корпус ионистора может иметь разный размер и соответствовать параметрам обычных батареек. Такой модуль очень быстро теряет заряд и также быстро заряжается.

Применяют такие устройства в цифровых электронных приборах, в качестве дополнительного источника питания, что позволяет сохранить настройки аппаратуры при замене батареек.

Также суперконденсаторы применяют для работы таймеров на телевизоре, микроволновке и другой бытовой и аудиотехнике, а также медицинском оборудовании. Высокоемкостные ионисторы совместно с аккумуляторами способны питать электродвигатели.

Нередко ультраконденсаторы встраивают в микросхемы светодиодных фонарей. Заряжаться модуль может от солнечной энергии, накопленной в солнечных батарейках.

Как работает суперконденсатор

Принцип действия ультраконденсатора схож с обычным конденсатором, но комплектация внутреннего блока отличается материалами, из которых он изготовлен.

Контур делают из пористого материала, обладающего высокой электропроводимостью. Диэлектриком выступает электролит.

В электрохимическом конденсаторе электрозаряд накапливается при помощи формирования двойного слоя напряжения на электроде в момент адсорбции ионов из рабочей жидкости (электролита).

В основу функционирования ионистора заложен принцип разложения разной полярности потенциалов – на катоде создаются ионы с отрицательным зарядом, а на аноде – с положительным.

Когда электролит проходит сквозь сепаратор, который разделяет полярность ионов, предотвращается замыкание. Напряжение сохраняется в устройстве статистическим методом.

В течение небольшого временного отрезка суперконденсаторы способны накопить большой объем электроэнергии, что снижает время для их подзарядки.

Отдают устройства до 90% энергии, в отличие от аккумуляторов, которые способны отдать не больше 60%.

Электрический модуль изготавливают с охлаждением нескольких видов:

  • естественное;
  • водяное;
  • воздушное.

Виды устройств

Ультраконденсаторы производят нескольких видов:

  1. Псевдоконденсаторы. Комплектуются твердым типом электродов.
  2. Гибридные блоки. Это переходной вариант между батареями и традиционными конденсаторами. Накопление и отдача заряда происходит в двойном электрическом слое. В приборе ставят электроды из различных материалов, от этого зависит и механизм накопления электрозаряда.

Катоды выполнены из графена, который представляет двумерную модификацию молекулы углерода с распределением атомов в один ряд. Данный материал отличается стойкостью к химическим реакциям.

Преимущества и недостатки

Основные преимущества ультраконденсаторов:

  1. В сравнении с аккумуляторами большее число циклов заряда/разряда.
  2. Короткое время для заряда/разряда. Приборы устанавливаются там, где нет возможности использовать аккумулятор по причине длительного времени заряда.
  3. Небольшая масса и габариты.
  4. Для заряда не нужно применять специальное устройство, что упрощает эксплуатацию и обслуживание.
  5. Период эксплуатации выше, чем батарей и конденсаторов.
  6. Допустимый температурный режим при эксплуатации – от -40 до +70 градусов.

Основные недостатки ионистора:

  1. Небольшая величина напряжения. Для увеличения номинального напряжения подсоединяют несколько приборов по последовательной схеме. Принцип соединения ультраконденсаторов идентичен с подключением гальванических элементов для повышения напряжения.
  2. Высокая стоимость устройства. Данный недостаток скоро будет неактуальным, потому что техническое развитие не стоит на месте, разрабатываются новые материалы и технологии, что повлияет и на стоимость приборов.
  3. Не накапливают энергии столько, сколько аккумуляторы, по причине небольшой энергетической плотности, что сказывается на ограниченности в применении.
  4. Соблюдать полярность при подключении обязательно.
  5. Не допускать короткого замыкания, которое выведет устройство из строя.
  6. Применяются суперконденсаторы в цепи постоянного и пульсирующего тока, но при высокочастотном переменном токе устройство перегревается, что приводит к неисправности.

Ионисторы являются автономными источниками электропитания. Для микроэлектроники разрабатывают компактные устройства. В перспективе расширение сферы применения – автомобилестроение, мобильная техники, сфера связи.

Ионистор — что это такое и где применяется

Человечество с каждым днём всё более нуждается в качественных источниках резервного питания. Аккумуляторы – довольно сложные в обслуживании приборы и ограниченные в объёме электрического заряда. Требовался мощный накопитель электроэнергии. Такой прибор был изобретён. Ионистор – что это такое? Это суперконденсатор (Supercapacitor), электролит которого может состоять, как из органических, так и неорганических веществ. По функциональным возможностям ионистор можно определить не только как конденсатор, но и как химический источник тока.

Концепция

Ионистор большой ёмкости – это конденсатор, объём которого может составлять несколько фарад напряжением от 2 до 10 вольт. Накопителем заряда является двойной электрический слой (ДЭС) на линии соприкосновения электрода и электролита. Если обычные ёмкости измеряются в микро,- и пикофарадах, то становится понятно, что эти ионисторы являются суперконденсаторами. Концепция ионистора построена на том, что за счёт тонкости ДЭС и большой поверхности пористых обкладок и электродов удаётся достичь колоссального объёма заряда.

История изобретения ионистора

Американской компанией Дженерал Электрик в 1957 году был запатентован простой ионистор с ДЭС, электроды которого были сделаны из активированного угля. Теоретически предполагалось накопление энергии в порах поверхности электродов.

Уже в 1966 году компанией Стандарт Ойл Огайо был получен патент на компонент, который обеспечивал накопление энергии в ДЭС. Потерпев убытки, связанные с низкой реализацией ёмких конденсаторов, фирма передала права на изготовление этих устройств компании Nec. Новый владелец лицензии сумел значительно увеличить спрос на свою продукцию под названием суперконденсатор (Supercapacitor). Устройство значительно понизило энергозависимость электронной памяти, что стимулировало развитие компьютерных технологий.

1978 год ознаменовался появлением на рынке электротехники Золотого конденсатора (Gold Cap) ведущей японской электрокомпании Панасоник. Это уже было устройство более высокого качества. Ионисторы нашли своё применение в системах питания электронной памяти.

В том же году первое упоминание о том, что такое ионисторы в СССР, было опубликовано в пятом номере журнала «Радио». В статье был описан первый советский ионистор КИ1-1. Его устройство предполагало предельный объём заряда до 50 фарад. Недостатком суперконденсатора было его высокое внутреннее сопротивление (ВС), что препятствовало полноценной отдаче электрической энергии.

Суперконденсаторы с малым ВС появились только в 1982 году. Новая конструкция была разработана специалистами компании PRI для особо мощных схем, где применяют ионистор «PRI Ultracapacitor».

Важно! Прогресс в совершенствовании суперконденсаторов приведёт к тому, что ионисторы полностью заменят традиционные аккумуляторы.

Разновидности суперконденсаторов

Ионисторы делятся на три вида:

  1. Идеальный ионистор. Название было присвоено ионному конденсатору, в котором электроды из углерода поляризовались на 100%. При полном отсутствии электрохимических процессов энергия накапливается благодаря ионному переносу электронов с одного на другой электрод. Электролитом в «идеальных» ионисторах служат растворы основания KOH и серной кислоты H2SO4.
  2. Гибридные ионисторы – это конденсаторы со слабо поляризуемыми электродами. Скопление энергии в ДЭС происходит на поверхности одного из электродов.
  3. Псевдоионисторы обладают высокой удельной ёмкостью. На поверхности электродов происходят возвратные электрохимические реакции.

Сравнение положительных и отрицательных сторон

Ионисторы стали использовать не только, как преобразователи параметров электрической цепи, но и как поставщики электроэнергии. Они стали широко применяться вместо одноразовых аккумуляторных элементов питания в электронных системах хранения информации.

Обратите внимание! Несмотря на превосходные технические характеристики ионисторов, ими ещё нельзя полноценно заменить аккумулятор на автомобиле.

По сравнению с гальваническими элементами и аккумуляторами, ионисторы имеют свои недостатки и преимущества.

Недостатки

  1. Массовое внедрение ионисторов тормозит их высокая стоимость.
  2. Зависимость напряжения от уровня зарядки конденсатора.
  3. В момент короткого замыкания возникает риск выгорания электродов в ионисторах большой ёмкости при крайне низком ВС.
  4. Высокий показатель саморазряда суперконденсаторов ёмкостью в несколько фарад.
  5. Небольшая скорость отдачи энергии, в отличие от обычных конденсаторов.

Достоинства

  1. Возможность устанавливать максимально большой ток зарядки и получать разряд той же величины.
  2. Высокая стойкость к деградации. Многочисленные исследования показали, что даже после 100 тыс. циклов заряда-разрядки у ионисторов не наблюдалось ухудшение характеристик.
  3. Оптимальное внутреннее сопротивление не допускает быстрый саморазряд, не приводит к перегреву устройства и его разрушению.
  4. В среднем ионистор может прослужить около 40 тыс. часов при минимальном снижении ёмкости.
  5. Ионистор обладает небольшим весом, в отличие от электролитических конденсаторов аналогичной ёмкости.
  6. Ионистор отлично функционирует и в мороз, и в жаркое время года.
  7. Достаточная механическая прочность позволяет устройству переносить значительные нагрузки.

Материалы изготовления

Электроды традиционно изготавливают из активированного угля. В некоторых случаях используют вспененный металл. Именно эти материалы обладают повышенной пористостью, что необходимо для получения больших площадей поверхности. Это особенность позволяет хранить энергию в больших объёмах.

Плотность энергии

Ионисторы не отличаются повышенной плотностью энергии. У ионистора весом 500 граммов плотность энергии равна 20 кДж/кг. Это почти в 8 раз меньше показателя обычного кислотного аккумулятора. Однако этот параметр суперконденсаторов в несколько десятков раз превышает показатель простых конденсаторов.

Практическое использование ионисторов

Современные модели суперконденсаторов стали использоваться в сферах транспорта и бытовой электроники.

Транспортные средства

С недавнего времени в схему питания электротранспорта всё чаще стали встраивать мощные ионистры.

Тяжёлый и общественный транспорт

На улицах мегаполисов мира стали появляться электробусы. В Москве можно увидеть общественный транспорт, работающий на энергии бортовых ионисторов. Отечественные электрические автобусы вышли на городские маршруты столицы в мае нынешнего года.

На тяжёлых транспортных средствах суперконденсаторы используются как вспомогательный источник питания.

Автомобили

Ведущие производители электромобилей, такие как Тесла и Ниссан, пользуясь международными выставками, представляют каждый раз новые модели, системы питания которых построены на ионисторах. Российский опытный образец Ё-мобиль использует суперконденсатор как основной источник энергии.

Дополнительная информация. На автомобилях, работающих на жидком топливе, стали устанавливать ионисторы для обеспечения лёгкого пуска двигателя в условиях Крайнего Севера.

Автогонки

Для пропаганды и рекламы автомобилей, работающих на ионисторах, ведущие автоконцерны постоянно проводят автогонки на таких автомашинах. Зрители на таких мероприятиях проявляют большой интерес к перспективе развития электрического индивидуального транспорта.

Бытовая электроника

Суперконденсаторы стремительно ворвались в сферу бытовой электроники. Их можно заметить в блоках резервного питания ноутбуков, смартфонов. Ионисторы встроены в операционные блоки персональных компьютеров. Они предохраняют от потери данных во время аварийных отключений от постоянного источника электроэнергии.

Перспективы развития

Специалисты предсказывают повсеместную замену традиционного общественного транспорта на гибридные модели. Троллейбусы смогут преодолевать трудные участки дороги без троллей с использованием питания бортовых ионисторов. Учёные во всём мире ведут поиски новых материалов для изготовления сверхмощных суперконденсаторов.

Обозначение ионистора на схеме

Суперконденсаторы на схемах обозначают в виде прямоугольников или треугольников, в поле которых присутствуют две латинские литеры IC.

Ионистор своими руками

Для изготовления суперконденсатора своими руками потребуются:

  • фольга, можно взять вкладку из пачки сигарет, она будет диэлектриком;
  • таблетка активированного угля, это будет электрод;
  • клей ПВА в качестве электролита.

Изготавливают простейший ионистор своими руками следующим образом:

  1. Мелко размолотый уголь перемешивают с клеем ПВА.
  2. Кистью наносят смесь на один отрезок фольги.
  3. После каждой просушки наносят следующий клеевой слой. Трех слоев вполне достаточно для изготовления ионистора.
  4. На высушенную поверхность накладывают второй отрезок фольги после обработки клеем ПВА.
  5. Приложив с двух сторон модели проводки от батарейки, заряжают самодельный ионистор.

Продемонстрировать возможности самоделки можно, услышав сигнал подсоединённого маломощного динамика, или, если применить его для свечения светодиода.

Частота, с которой создаются новые модели суперконденсаторов, настолько большая, что порой трудно запоминать новые названия. Специалисты ожидают скорого появления высоковольтных иониксов, которые совершат технологическую революцию во всех сферах деятельности человека.

Видео

Что такое ионистор?

Ионистор впервые появился еще в 20 веке. Изобрел это устройство американец Райтмаер, химик по образованию. В различных источниках и научной литературе этот прибор называется по-разному – суперконденсатор или ультраконденсатор. По своему внешнему виду ионистор похож на электролитический конденсатор, единственное и существенное отличие – это его емкость, она намного превышает обычные значение для этих радиодеталей.

В странах ЕС и США они обозначаются аббревиатурой EDLC, что переводится как конденсатор с двойным слоем. В данной статье будет разобрано строение, структура, применение ионисторов, где они используются. В качестве дополнения статья содержит в себе скачиваемые материал с точными техническими характеристиками и два видеоролика.

Что такое ионистор

Ионистор (или суперконденсатор) – это энергонакопительный конденсатор, заряд в котором накапливается на границе раздела двух сред – электрода и электролита. Энергия в ионисторе содержится в виде статического заряда. Накопление совершается, если к его обкладкам будет приложена разность потенциалов (постоянное напряжение).

Концепция создания ионисторов появилась недавно, и в настоящее время они заняли свою нишу применения. Ионисторы успешно могут заменять химические источники тока в качестве резервного (микросхемы памяти) или основного подзаряжаемого (часы, калькуляторы) источника питания.

Если обычный конденсатор представляет собой обкладки из фольги, разделенные сухим сепаратором, то ионистор – это комбинация конденсатора с электрохимической батареей. В нем применяются специальные обкладки и электролит.

В качестве обкладок используются материалы одного из трех типов: обкладки большой площади на основе активированного угля, оксиды металлов и проводящие полимеры. Использование высокопористых угольных материалов позволяет достичь плотности емкости порядка 10 Ф/см3 и больше.

Ионисторы на базе активированного угля наиболее экономичны в изготовлении. Их еще называют двухслойными или DLC-конденсаторами, потому что заряд сохраняется в двойном слое, образующемся на поверхности обкладки.

Для питания электронных схем нужны более высокие напряжения, чем обеспечивают ионисторы. Для получения нужного напряжения их включают последовательно. 3-4 ионистора обеспечивают напряжение достаточной величины.

Величина энергетической емкости конденсаторов измеряется в пикофарадах, нанофарадах и микрофарадах, в то время как емкость ионисторов (суперконденсаторов) на самом деле огромна и измеряется в фарадах (Ф). В ионисторах достижима энергетическая плотность от 1 до 10 Вт/кг. Она больше, чем у типичных конденсаторов, но меньше, чем у аккумуляторов. Относительно низкое внутреннее сопротивление ионисторов обеспечивает хорошую проводимость.

Параметры

Ионисторы отличаются следующими характеристиками:

  1. Внутреннее сопротивление (измеряется в миллиОмах).
  2. Максимальный ток. (А).
  3. Номинальное напряжение (В).
  4. Емкость (Ф).
  5. Параметры саморазряда.

В качестве электродов в приборе применяется активированный уголь или углерод на вспененной основе. Эти компоненты помещаются в электролит. Сепаратор предназначен для защиты устройства от короткого замыкания электродов. В современных устройствах не используется электролит на основе кислоты или кристаллического раствора щелочи, так как данные компоненты обладают высоким уровнем токсичности.

Во внутренних полостях конструкции содержится электролит, запасающий электроэнергию при взаимодействии с пластинами. Первые электрохимические ионисторы (молекулярные накопители энергиибыли) разработаны более 50 лет назад. Они были изготовлены на основе пористых углеродных электродов. В настоящее время они используются в некоторых электрических приборах. По сравнению с литий – ионными аккумуляторами современные ионисторы характеризуются большим ресурсом и высокой скоростью разряда.

При использовании ионисторов можно добиться более экономичного режима работы за счет аккумулирования излишков энергии. Между обкладками конструкции располагается не стандартный слой диэлектрика, а более толстая прослойка, позволяющая получить тонкий зазор.

При этом прибор обеспечивает возможность получения электроэнергии в больших объемах. Суперконденсатор аккумулирует и расходует заряды быстрее, чем альтернативные варианты. Двойной слой диэлектрика увеличивает площадь электродов. Это позволяет улучшить электрические характеристики.

Отличия суперконденсаторов от аккумуляторов

Суперконденсаторы часто применяются вместо батарей. Стандартные конденсаторы способны хранить небольшое количество электроэнергии. Суперконденсаторы могут накапливать заряды в тысячи, миллионы и миллиарды раз больше.

Подобные приборы работают быстрее батарей. Это обусловлено тем, что суперконденсатор создает статистические заряды на твердых телах, а батареи зависят от медленно протекающих химических реакций.

Батареи характеризуются более высокой плотностью энергии, а ионисторы более высокой плотностью мощности. Суперконденсаторы способны функционировать при низких показателях напряжения, а для получения большего напряжения, их нужно последовательно соединить. Такой вариант необходим для более мощного оборудования.

Технология ионисторов может найти применение в энергетике и приборостроении. Одно из применений – использование в ветряных турбинах. Подобные приборы помогают сгладить прерывистое питание от ветра.

В портативных электронных приборах используются источники питания разнообразных типов. В таких устройствах, как планшеты, смартфоны и ноутбуки важное значение имеет удельная энергоемкость. Чем больше данный показатель, тем выше будет емкость устройства при тех же физических параметрах.

Преимущества

  • Если сравнивать ультраконденсаторы с аккумуляторами, то первые из них способны обеспечить значительно большее число циклов заряда и разряда.
  • Цикл заряда и разряда происходит за очень короткое время, что дает возможность применять их в таких ситуациях, когда нельзя установить аккумуляторы, ввиду их длительной зарядки.
  • Устройства такого вида имеют намного меньшую массу и габаритные размеры.
  • Для выполнения заряда не требуется специального зарядного устройства, что упрощает обслуживание.
  • Срок работы ультраконденсаторов значительно выше, по сравнению с батареями аккумуляторов и силовыми конденсаторами.
  • Широкий интервал эксплуатационной температуры от -40 до +70 градусов.

Недостатки

  • Малая величина номинального напряжения. Этот вопрос решают путем соединения нескольких ультраконденсаторов по последовательной схеме, так же, как соединяют несколько гальванических элементов для увеличения напряжения.
  • Повышенная цена на такие устройства способствует удорожанию изделий, в которых они используются. По заверению ученых, скоро эта проблема станет неактуальной, так как технологии постоянно развиваются, и стоимость подобных устройств снижается.
  • Ионисторы не способны накопить большое количество энергии, так как имеют незначительную энергетическую плотность, и не могут обладать мощностью, сравнимой с аккумуляторами. Это негативно влияет на область их использования. Эта проблема может частично решиться путем подключения нескольких ионисторов вместе, по параллельной схеме.
  • Необходимость соблюдения полярности при подключении.
  • Не допускается короткое замыкание между электродами, так как от этого сильно возрастет температура ультраконденсатора, и он может выйти из строя.
  • Ионисторы хорошо работают в цепях пульсирующего и постоянного тока. Но при высокочастотном пульсирующем токе они сильно нагреваются ввиду их большого внутреннего сопротивления, что часто приводит к выходу из строя.

Применение

Ионисторы часто встречаются в устройстве цифрового оборудования. Они играют роль запасного источника питания микроконтроллера, микросхемы и т.д. С помощью такого источника при выключенном основном питании аппаратура способна сохранять настройки и обеспечивать питание встроенных часов. Например, в некоторых аудиоплеерах применяется миниатюрный ионистор.

Его емкость значительно меньше аккумулятора, но его хватает на несколько суток, чтобы сохранить работу часов и настроек. Также ультраконденсаторы используются для работы таймеров телевизора, микроволновой печи, сложного медицинского оборудования.

Были случаи опытного использования ионисторов, например, для проектирования электромагнитной пушки, которую называют Гаусс оружием. В быту ионисторы используются в схемах маломощных светодиодных фонариков. Его зарядка может выполняться от солнечных элементов.

Перспективы использования

Ионисторы с каждым годом становятся все совершенней. Важным параметром, которому ученые уделяют особое внимание – является увеличение удельной емкости. Через какое – то время планируется подобными приборами заменить аккумуляторы. Такие элементы позволяют заменить батареи в различных технических сферах. Специалисты возлагают большие надежды на разработку графеновых устройств. Применение инновационного материала поможет уже в ближайшее время создать изделия с высокими показателями запасаемой удельной энергии.

Ионистор нового образца в несколько раз превосходит альтернативные варианты. Данные элементы имеют в своей основе пористую структуру. Применяется графен, на котором распределяются частицы рутения. Преимуществом графеновой пены является способность удержания частиц оксидов переходных металлов. Подобные суперконденсаторы работают на водном электролите, что позволяет обеспечить безопасность эксплуатации.

В перспективе новинки будут применяться в сфере изготовления персонального электрического транспорта. Приборы на основе графеновой пены могут перезаряжаться до 8000 раз без ухудшения качественных характеристик. В сфере автомобильного строения проводятся разработки альтернативных разновидностей топлива и устройств накопления энергии высокой эффективности. Подобные приборы могут применяться для грузового транспорта, электрических автомобилей и поездов.

В автомобилестроении суперконденсаторные батареи находят следующие применения:

  1. Пусковое устройство подсоединяется параллельно стартерным батареям. Применяется для повышения эксплуатационного срока и улучшения пусковых характеристик двигателя.
  2. Для стабильного питания акустических систем большой мощности в автомобиле.
  3. Буферные батареи подходят для применения в гибридном транспорте. Они характеризуются небольшой емкостью и значительной выходной мощностью.
  4. Тяговые батареи актуальны при использовании в качестве основного источника питания.

Суперконденсаторы обладают множеством преимуществ по сравнению с аккумуляторами в автомобильной промышленности. Они превосходно выдерживают перепады напряжения. Приборы характеризуются легкостью, поэтому можно устанавливать большое их количество. Для сферы микроэлектроники разрабатываются новые технологии по производству компактных суперконденсаторов.

При производстве электродов применяются специальные методы осаждения на тонкую подложку из диоксида кремния специальной углеродистой пленки. Использование суперконденсаторов позволяет внедрить в жизнь экологические технологии экономии энергии. В перспективе предусмотрено расширение сфер применения таких приспособлений для отраслей автотранспорта, мобильной техники и средств связи.

Ионистор. Устройство и применение. Работа. Авто-пусковое устройство

В прошлом веке американский химик Райтмаер получил патент на устройство, сохраняющее электрическую энергию с двойным электрическим слоем. Сегодня такое устройство называется ионистор. В разных источниках они могут иметь различные названия: суперконденсаторы, ультраконденсаторы. По размерам и внешнему виду они похожи на электролитические конденсаторы, с отличием, заключающимся в большой емкости.

В зарубежных странах они имеют короткое обозначение – EDLC, что в переводе с английского значит: конденсатор, обладающий двойным электрическим слоем. По сути дела ионистор является своеобразным гибридом аккумулятора и конденсатора.

Устройство и принцип действия

Если сравнивать устройство ионистора с конструкцией конденсатора, то разница заключается в отсутствии слоя диэлектрика у ионистора. В качестве обкладок выступают вещества, имеющие носители заряда противоположных знаков.

Емкость любого конденсатора, так же как ионистора зависит от размера обкладок. Поэтому у ионистора обкладки сделаны из активированного угля или вспененного углерода. Таким способом получают значительную площадь модифицированных обкладок. Выводы ионистора разделены сепаратором, помещенным в электролит. Они предназначены для предотвращения возможного короткого замыкания. Состав электролита: щелочи и кислоты в твердом и кристаллическом виде.

Если использовать кристаллический твердый электролит на основе йода, серебра и рубидия, то можно изготовить ионистор, обладающий большой емкостью, низким саморазрядом и способный функционировать при пониженных температурах. Возможно производство аналогичных ультраконденсаторов, на базе электролита из раствора серной кислоты. Такие устройства имеют малое внутреннее сопротивление, но также небольшое рабочее напряжение 1 вольт. В настоящее время ионисторы, содержащие электролиты из кислот и щелочей практически не изготавливают, так как они обладают повышенными токсичными свойствами.

В результате протекания электрохимических реакций незначительное число электронов отрывается от полюсов устройства, обеспечивая им положительный заряд. Находящиеся в электролите отрицательные ионы притягиваются полюсами, имеющими положительный заряд. В результате создается электрический слой.

Заряд в ультраконденсаторе сохраняется на границе углеродного полюса и электролита. Электрический слой, образованный катионами и анионами, имеет очень малую толщину, равную от 1 до 5 нанометров, что позволяет значительно повысить емкость ультраконденсатора.

Классификация

  • Идеальные. Это ионные конденсаторы с идеально поляризуемыми электродами, состоящими из углерода. Такие суперконденсаторы работают не за счет электрохимических реакций, а благодаря переносу ионов между электродами. Электролиты могут состоять из щелочи калия, серной кислоты, а также органических веществ.
  • Гибридные. Это суперконденсаторы с идеально поляризуемым электродом, изготовленным из углерода, и слабо поляризуемым анодом или катодом. В их работе частично используется электрохимическая реакция.
  • Псевдоконденсаторы. Это устройства, накапливающие заряд путем использования обратимых электрохимических реакций на поверхности электродов. Они обладают повышенной удельной емкостью.
Рабочие параметры ионисторов:
  • Емкость.
  • Наибольший ток разряда.
  • Внутреннее сопротивление.
  • Номинальное напряжение.
  • Время разряда.

В инструкции на суперконденсатор обычно указывается величина внутреннего сопротивления при частоте тока 1 килогерц. Чем меньше их внутреннее сопротивление, тем быстрее происходит заряд.

Изображение на схемах

На электрических схемах ионисторы изображаются по типу электролитического конденсатора, и отличить его можно только по величине номинальных параметров.

Если, например, на схеме указана величина емкости 1 Фарада, то сразу ясно, что изображен ионистор, так как таких емких электролитических конденсаторов не бывает. Напряжение ультраконденсатора также может говорить об его отличии от электролитического конденсатора, так как обычно это незначительная величина в несколько вольт (от 1 до 5 В). Ионисторы не способны функционировать при большом напряжении.

Преимущества
  • Если сравнивать ультраконденсаторы с аккумуляторами, то первые из них способны обеспечить значительно большее число циклов заряда и разряда.
  • Цикл заряда и разряда происходит за очень короткое время, что дает возможность применять их в таких ситуациях, когда нельзя установить аккумуляторы, ввиду их длительной зарядки.
  • Устройства такого вида имеют намного меньшую массу и габаритные размеры.
  • Для выполнения заряда не требуется специального зарядного устройства, что упрощает обслуживание.
  • Срок работы ультраконденсаторов значительно выше, по сравнению с батареями аккумуляторов и силовыми конденсаторами.
  • Широкий интервал эксплуатационной температуры от -40 до +70 градусов.
Недостатки
  • Малая величина номинального напряжения. Этот вопрос решают путем соединения нескольких ультраконденсаторов по последовательной схеме, так же, как соединяют несколько гальванических элементов для увеличения напряжения.
  • Повышенная цена на такие устройства способствует удорожанию изделий, в которых они используются. По заверению ученых, скоро эта проблема станет неактуальной, так как технологии постоянно развиваются, и стоимость подобных устройств снижается.
  • Ионисторы не способны накопить большое количество энергии, так как имеют незначительную энергетическую плотность, и не могут обладать мощностью, сравнимой с аккумуляторами. Это негативно влияет на область их использования. Эта проблема может частично решиться путем подключения нескольких ионисторов вместе, по параллельной схеме.
  • Необходимость соблюдения полярности при подключении.
  • Не допускается короткое замыкание между электродами, так как от этого сильно возрастет температура ультраконденсатора, и он может выйти из строя.
  • Ионисторы хорошо работают в цепях пульсирующего и постоянного тока. Но при высокочастотном пульсирующем токе они сильно нагреваются ввиду их большого внутреннего сопротивления, что часто приводит к выходу из строя.
Применение

Ионисторы часто встречаются в устройстве цифрового оборудования. Они играют роль запасного источника питания микроконтроллера, микросхемы и т.д. С помощью такого источника при выключенном основном питании аппаратура способна сохранять настройки и обеспечивать питание встроенных часов. Например, в некоторых аудиоплеерах применяется миниатюрный ионистор.

В момент замены батареек или аккумуляторов в плеере могут сбиться настройки частоты радиостанции, часов. Благодаря встроенному ионистору этого не происходит. Он питает электронную схему. Его емкость значительно меньше аккумулятора, но его хватает на несколько суток, чтобы сохранить работу часов и настроек.

Также ультраконденсаторы используются для работы таймеров телевизора, микроволновой печи, сложного медицинского оборудования.

Были случаи опытного использования ионисторов, например, для проектирования электромагнитной пушки, которую называют Гаусс оружием.

В быту ионисторы используются в схемах маломощных светодиодных фонариков. Его зарядка может выполняться от солнечных элементов.

Автомобильное пусковое устройство

Популярным примером использования мощного ионистора можно назвать пусковое устройство для двигателя автомобиля.

Эта схема выполняется на легковых автомобилях любой марки с напряжением сети 12 вольт.

  • 1 – положительный контакт аккумуляторной батареи.
  • 2 – контакт массы (отрицательный полюс).
  • 3 – клемма замка зажигания.
  • В1 – аккумулятор.
  • Кс – замок зажигания.
  • К1 и К1.1 – контактор с ключом управления.
  • С – ионистор.
  • Rс – сопротивление для ограничения зарядного тока ультраконденсатора.
В схеме применяется ионистор со следующими параметрами:
  • Максимальное напряжение 15 вольт.
  • Внутреннее сопротивление 0,0015 Ом.
  • Емкость 216 Фарад.
  • Рабочий ток 2000 ампер.

Такого пускового устройства достаточно, чтобы запустить двигатель мощностью до 150 л. с. ультраконденсатор способен получить полный заряд за пять секунд. Такое устройство можно найти в продаже, но сделать его самостоятельно намного дешевле.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий