Как называется прибор измерения тока

Электроизмерительные приборы

Электроизмерительные приборы — класс устройств, применяемых для измерения различных электрических величин. В группу электроизмерительных приборов входят также кроме собственно измерительных приборов и другие средства измерений — меры, преобразователи, комплексные установки.

Амперметр переменного тока

Вольтметр переменного тока

Содержание

Применение

Средства электрических измерений широко применяются в энергетике, связи, промышленности, на транспорте, в научных исследованиях, медицине, а также в быту — для учёта потребляемой электроэнергии. Используя специальные датчики для преобразования неэлектрических величин в электрические, электроизмерительные приборы можно использовать для измерения самых разных физических величин, что ещё больше расширяет диапазон их применения.

Классификация

  • Наиболее существенным признаком для классификации электроизмерительной аппаратуры является измеряемая или воспроизводимая физическая величина, в соответствии с этим приборы подразделяются на ряд видов:
    • амперметры — для измерения силы электрического тока;
    • вольтметры — для измерения электрического напряжения;
    • омметры — для измерения электрического сопротивления;
    • мультиметры (иначе тестеры, авометры) — комбинированные приборы
    • частотомеры — для измерения частоты колебаний электрического тока;
    • магазины сопротивлений — для воспроизведения заданных сопротивлений;
    • ваттметры и варметры — для измерения мощности электрического тока;
    • электрические счётчики — для измерения потреблённой электроэнергии
    • и множество других видов
  • Кроме этого существуют классификации по другим признакам:
    • по назначению — измерительные приборы, меры, измерительные преобразователи, измерительные установки и системы, вспомогательные устройства;
    • по способу представления результатов измерений — показывающие и регистрирующие ( в виде графика на бумаге или фотоплёнке, распечатки, либо в электронном виде);
    • по методу измерения — приборы непосредственной оценки и приборы сравнения;
    • по способу применения и по конструкции — щитовые (закрепляемые на щите или панели), переносные и стационарные;
    • по принципу действия:
      • электромеханические:
        • магнитоэлектрические;
        • электромагнитные;
        • электродинамические;
        • электростатические;
        • ферродинамические;
        • индукционные;
        • магнитодинамические;
      • электронные;
      • термоэлектрические;
      • электрохимические.

Обозначения

В зарубежных странах обозначения средств измерений устанавливаются предприятиями-изготовителями, в России (и частично в других странах СНГ) традиционно принята унифицированная система обозначений, основанная на принципах действия электроизмерительных приборов. В состав обозначения входит прописная русская буква, соответствующая принципу действия прибора, и число — условный номер модели. Например: С197 — киловольтметр электростатический. К обозначению могут добавляться буквы М (модернизированный), К (контактный) и другие, отмечающие конструктивные особенности или модификации приборов.

  • В — приборы вибрационного типа (язычковые)
  • Д — электродинамические приборы
  • Е — измерительные преобразователи
  • И — индукционные приборы
  • К — многоканальные и комплексные измерительные установки и системы
  • Л — логометры
  • М — магнитоэлектрические приборы
  • Н — самопишущие приборы
  • П — вспомогательные измерительные устройства
  • Р — меры, измерительные преобразователи, приборы для измерения параметров элементов электрических цепей
  • С — электростатические приборы
  • Т — термоэлектрические приборы
  • У — измерительные установки
  • Ф — электронные приборы
  • Х — нормальные элементы
  • Ц — приборы выпрямительного типа
  • Ш — измерительные преобразователи
  • Щ — ?
  • Э — электромагнитные приборы

Измерение тока. Виды и приборы. Принцип измерений и особенности

Нагрузка в электрической цепи характеризуется силой тока, измерение тока в амперах. Силу тока иногда приходится измерять для проверки допустимой величины нагрузки на кабель. Для прокладки электрической линии применяются кабели разного сечения. Если кабель работает с нагрузкой выше допустимой величины, то он нагревается, а изоляция постепенно разрушается. В результате это приводит к короткому замыканию и замене кабеля.

Способы измерения тока

Для измерения силы тока в электрической цепи, необходимо один вывод амперметра или другого прибора, способного измерять силу тока, подключить к положительной клемме источника тока или блока питания, а другой вывод к проводу потребителя. После этого можно делать измерение тока.

При измерениях необходимо соблюдать аккуратность, так как при размыкании действующей электрической цепи может возникнуть электрическая дуга.

Для измерения силы тока электрических устройств, подключаемых непосредственно к розетке или кабелю бытовой сети, измерительный прибор настраивается на режим переменного тока с завышенной верхней границей. Затем измерительный прибор подключают в разрыв провода фазы.

Все работы по подключению и отключению допускается производить только в обесточенной цепи. После всех подключений можно подавать питание и измерять силу тока. При этом нельзя касаться оголенных токоведущих частей, во избежание поражения электрическим током. Такие методы измерения неудобны и создают определенную опасность.

Значительно удобнее проводить измерения токоизмерительными клещами, которые могут выполнять все функции мультиметра, в зависимости от исполнения прибора. Работать такими клещами очень просто. Необходимо настроить режим измерения постоянного или переменного тока, развести усы и охватить ими фазный провод. Затем нужно проконтролировать плотность прилегания усов между собой и измерить ток. Для правильных показаний необходимо охватывать усами только фазный провод. Если охватить сразу два провода, то измерения не получится.

Токоизмерительные клещи служат только для замеров параметров переменного тока. Если их использовать для измерения постоянного тока, то усы сожмутся с большой силой, и раздвинуть их можно будет только, отключив питание.

Измерение тока рекомендуется делать в следующих случаях:

  • После прокладки нового кабеля необходимо измерить проходящий через него ток при всех работающих электрических устройствах.
  • Если к старой электропроводке подключена дополнительная нагрузка, то также следует проверить величину тока, которая не должна превышать допустимые пределы.
  • При нагрузке, равной верхнему допустимому пределу, проверяется соответствие тока, протекающего через электрические автоматы. Его величина не должна превышать номинальное значение рабочего тока автоматов. В противном случае автоматический выключатель обесточит сеть из-за перегрузки.
  • Измерение тока также необходимо для определения режимов эксплуатации электрических устройств. Измерение токовой нагрузки электродвигателей выполняется не только для проверки их работоспособности, но и для выявления превышения нагрузки выше допустимой, которая может возникнуть из-за большого механического усилия при работе устройства.
  • Если измерить ток в цепи работающего обогревателя, то он покажет исправность нагревательных элементов.
  • Работоспособность теплого пола в квартире также проверяется измерением тока.
Мощность тока

Кроме силы тока, существует понятие мощности тока. Этот параметр определяет работу тока, выполненную в единицу времени. Мощность тока равна отношению выполненной работы к промежутку времени, за которое эта работа была выполнена. Обозначают буквой «Р» и измеряют в ваттах.

Мощность рассчитывается путем перемножения напряжения сети на силу тока, потребляемого подключенными электрическими устройствами: Р = U х I. Обычно на электроприборах указывают потребляемую мощность, с помощью которой можно определить ток. Если ваш телевизор имеет мощность 140 Вт, то для определения тока делим эту величину на 220 В, в результате получаем 0,64 ампера. Это значение максимального тока, на практике ток может быть меньше при снижении яркости экрана или других изменениях настроек.

Измерение тока приборами
Для определения потребления электрической энергии с учетом эксплуатации потребителей в разных режимах, необходимы электрические измерительные приборы, способные выполнить измерение параметров тока.
  • Амперметр. Для измерения величины тока в цепи используют специальные приборы, называемые амперметрами. Они включаются в измеряемую цепь по последовательной схеме. Внутреннее сопротивление амперметра очень мало, поэтому он не влияет на параметры работы цепи.Шкала амперметра может быть размечена в амперах или других долях ампера: микроамперах, миллиамперах и т.д. Существует несколько видов амперметров: электронные, механические и т.д.

  • Мультиметр является электронным измерительным прибором, способным измерить различные параметры электрической цепи (сопротивление, напряжение, обрыв проводника, пригодность батарейки и т.д.), в том числе и силу тока. Существуют два вида мультиметров: цифровой и аналоговый. В мультиметре имеются различные настройки измерений.

Порядок измерения силы тока мультиметром:
  • Выяснить, какой интервал измерения вашего мультиметра. Каждый прибор рассчитан на измерение тока в некотором интервале, который должен соответствовать измеряемой электрической цепи. Наибольший допустимый ток измерения должен быть указан в инструкции.
  • Выбрать соответствующий режим измерений. Многие мультиметры способны работать в разных режимах, и измерять разные величины. Для замеров силы тока нужно переключиться на соответствующий режим, учитывая вид тока (постоянный или переменный).
  • Установить на приборе необходимый интервал измерений. Лучше установить верхний предел силы тока несколько выше предполагаемой величины. Снизить этот предел можно в любое время. Зато будет гарантия, что вы не выведете прибор из строя.
  • Вставить измерительные штекеры проводов в гнезда. В комплекте прибора имеются два провода со щупами и разъемами. Гнезда должны быть отмечены на приборе или изображены в паспорте.

  • Для начала измерения необходимо подключить мультиметр в цепь. При этом следует соблюдать правила безопасности и не касаться токоведущих частей незащищенными частями тела. Нельзя проводить измерения во влажной среде, так как влага проводит электрический ток. На руки следует надеть резиновые перчатки. Чтобы разорвать цепь для проведения измерений, следует разрезать проводник и зачистить изоляцию на обоих концах. Затем подсоединить щупы мультиметра к зачищенным концам провода и убедиться в хорошем контакте.
  • Включить питание цепи и зафиксировать показания прибора. В случае необходимости откорректировать верхний предел измерений.
  • Отключить питание цепи и отсоединить мультиметр.
  • Измерительные клещи. Если необходимо произвести измерение тока без разрыва электрической цепи, то измерительные клещи будут отличным вариантом для выполнения этой задачи. Этот прибор выпускают нескольких видов, и разной конструкции. Некоторые модели могут измерять и другие параметры цепи. Пользоваться измерительными токовыми клещами очень удобно.

Как измерить силу электрического тока в цепи?

В процессе эксплуатации различного оборудования возникает необходимость проверки основных электрических параметров его работы. Это нужно как для проверки определенных характеристик, так и для ремонтных работ. Одним из наиболее сложных и опасных измерений является определение величины токовой нагрузки. Поэтому для всех начинающих электриков будет актуально узнать, как измерить силу электрического тока в цепи правильно и безопасно.

Используемые приборы

Измерить силу тока можно различными способами, однако далеко не все из них применимы в повседневной жизни. К примеру, различные измерительные трансформаторы, подключаемые в цепь, крайне неудобно переносить по дому и даже хранить на полке в гараже. Поэтому актуальными средствами измерительной техники являются амперметры, мультиметры и клещи. Далее рассмотрим детально особенности работы и применения каждого из них.

Амперметр

Это один из наиболее простых измерительных приборов, который реагирует на изменение токовой нагрузки. С электротехнической точки зрения амперметр представляет собой нулевой или бесконечно малое сопротивление. Поэтому в случае приложения напряжения только к прибору, в нем возникнет ток короткого замыкания, из-за чего амперметр включается в цепь последовательно замеряемой нагрузке. Для наглядности стоит пояснить, что измерить силу тока в розетке нельзя, так как без нагрузки (в случае разомкнутой цепи) ток в ней не протекает, на контактах розетки присутствует только напряжение, поэтому подключение амперметра напрямую приведет к замыканию.

Под электрическим током подразумевается направленное движение заряженных частиц, которое проходит через поперечное сечение проводника за определенную единицу времени. Поэтому запомните, что токовая нагрузка возникает лишь от включения бытового электроприбора к источнику питания. Включение амперметра отдельно к точке электроснабжения или отдельно к рабочему двухполюснику никоим образом не даст информации о силе тока. Если рассмотреть пример на схеме, то чтобы замерить амперы вы должны включить прибор в линию последовательно к объекту измерения:

Рис. 1. Пример подключения амперметра

Как видите, основная сложность заключается в том, что процесс измерения происходит непосредственно в момент протекания электрической энергии, соответственно, велика вероятность поражения электрическим током в случае нарушения технологии.

Чтобы избежать плачевных последствий, необходимо соблюдать такие правила:

  • Подключение производится только при отсутствии напряжения;
  • Измерительные провода должны быть заизолированы, а места подключения удалены от человека, при необходимости исключена возможность прикосновения к ним;
  • Выведение амперметра из цепи измерения тока также выполняется при снятом напряжении.

Так как амперметр является узконаправленным прибором для измерения силы тока, его редко кто хранит у себя дома. Поэтому если вы хотите приобрести приспособление, куда выгоднее обзавестись мультиметром, который обладает значительно более широким функционалом.

Мультиметр

Этот прибор также называют тестером, Ц-эшкой, поэтому в обиходе можно встретить разные поколения мультиметра. Принцип использования мультиметра в качестве средства для измерения тока в цепи полностью аналогично амперметру, как по схеме включения, так и по предъявляемым мерам предосторожности. Однако следует отметить, что мультиметр мультиметру рознь, поэтому перед включением тестера обязательно посмотрите, подходит ли он, чтобы измерить ток в вашем случае.

Из конструктивных особенностей сразу отметим:

  • Диапазон измерения – выставляется переключателем на определенную величину силы тока. Выбирается таким, чтобы предполагаемая нагрузка его не превышала, но была соизмеримой.
  • Род тока – переменный или постоянный, заметьте, что некоторые модели мультиметров предоставляют возможность измерить только один вариант.
  • Разделение на слаботочные и силовые измерения – такие приборы имеют отдельную шкалу на мА, мкА и отдельную для А. Также в них могут располагаться отдельные разъемы, чтобы подключить щупы.
  • Наличие защиты от перегрузки при подключении измерительных устройств, обозначается отметкой unfused. Которая свидетельствует о наличии предохранителя, способного предотвратить выход со строя мультиметра от протекания чрезмерной силы тока.

По способу отображения информации все мультиметры подразделяются на циферблатные и дисплейные. Первые из них – довольно устаревшая модель, ориентироваться по ним смогут только искушенные электрики, знакомые с основами метрологии. Новичок же может запутаться в показаниях на шкале, цене деления или какими единицами измеряется нагрузка. Поэтому применение цифрового прибора куда проще и удобнее, на дисплее отображается конкретное число.

Токоизмерительные клещи

Это наиболее удобный прибор, так как чтобы измерить силу тока токоизмерительными клещами, нет нужды разрывать цепь. Конструктивно клещи представляют собой разъемный магнитопровод, в который и помещается проводник, на котором вы хотите померить силу тока. Токоизмерительные клещи имеют схожесть с тем же мультиметром, а в более продвинутых моделях вы встретите такой же переключатель с функцией определения мощности, напряжения, сопротивления, силы тока и разъемы для подключения щупов.

Как измерить силу тока в цепи

Для измерения электрического тока в цепи куда удобнее использовать современные устройства – мультиметры или клещи, особенно для одноразовых операций. А вот стационарный амперметр подойдет для тех ситуаций, когда вы планируете постоянно контролировать силу тока, к примеру, для контроля заряда батарейки или аккумулятора в автомобиле.

Постоянного тока

Разрыв электрической цепи организовывается до начала измерений при отключенном напряжении. Даже в низковольтных цепях вы можете вызвать замыкание батарейки, которое моментально приведет к потере электрического заряда. Далее рассмотрим пример измерения в цепи постоянного тока с помощью мультиметра, для этого:

Рис. 2. Использование мультиметра для измерения постоянного тока

  • подключите щупы к соответствующим вводам в тестер – черный в COM, красный в разъем с пометкой mA, A или 10A, в зависимости от устройства;
  • при помощи «крокодилов» соедините щупы тестера с цепью измерения последовательно;
  • установите переключателем нужный род тока и предел измерений;
  • можете подключить нагрузку и произвести измерения, на дисплее мультиметра отобразится искомое значение.

Но заметьте, подключать мультиметр следует на короткий промежуток времени, так как он может перегреться и выйти со строя.

Переменного тока

Цепь переменного напряжения может измеряться как мультиметром, так и токоизмерительными клещами. Но, в связи с опасностью переменного бытового напряжения для жизни человека, эту процедуру целесообразнее выполнять клещами без измерительных щупов и без разрыва цепи.

Рис. 3. Использование клещей для измерения переменного тока

Для этого вам нужно:

  • переключить ручку в положение переменных токов на нужную позицию нагрузки, если она изначально неизвестна, то сразу выбирают максимальный диапазон;
  • нажать боковую скобу, которая разомкнет клещи;
  • поместить внутрь клещей токоведущую жилу и отпустить кнопку.
  • данные измерений отобразятся на дисплее, при необходимости их можно зафиксировать соответствующей кнопкой.

Производить измерения можно как на изолированных, так и на оголенных жилах. Но заметьте, в область обхвата должен попадать только один проводник, сразу в двух измерить не получится.

Реальные примеры измерения тока

Далее рассмотрим несколько вариантов того, как подключить измерительный прибор в бытовых нуждах. При замерах батареек вам необходимо один щуп приложить к контакту батарейки, а второй к контакту нагрузки, второй контакт нагрузки подключается к свободной клемме батарейки.

Если вы хотите проверить токовую нагрузку в обмотках трехфазного электродвигателя, измерительный прибор подключается поочередно в каждую фазу или если у вас есть три амперметра, можете использовать их одновременно. Для этого щупы подключаются одним концом к выводам обмоток в борно, а вторым, к питающему проводу соответствующей фазы.

Способы на видео


Измерение тока.

Измерение силы тока (сокращено – измерение тока) полезное умение, которое не раз пригодится в жизни. Знать величину силы тока надо, когда следует определить потребляемую мощность. Для измерения тока применяется прибор под названием Амперметр.

Есть ток переменный и ток постоянный, следовательно, для их измерения применяются различные измерительные приборы. Ток всегда обозначается буквой I, а его сила измеряется в Амперах и обозначается буквой А. Например, I=2 А показывает, что сила тока в проверяемой цепи равняется 2 Амперам.

Рассмотрим подробно, как маркируются различные измерительные приборы для измерения разных видов токов.

  • На измерительном приборе для измерения постоянного тока перед буквой А наносится символ “–”.
  • На измерительном приборе для измерения переменного тока, в том же месте наносится символ “

А прибор для измерения переменного тока.

  • –А прибор для измерения постоянного тока.
  • Вот фотография амперметра, предназначенного для измерения постоянного тока.

    Соответственно закону, сила тока протекающего в замкнутой цепи, в любой его точке равна одной и той же величине. В итоге, чтобы измерить ток, надо разъединить цепь на любом участке удобным для подсоединения измерительного прибора.

    Следует помнить, что величина напряжения присутствующего в электрической цепи, не оказывает никакого влияния на измерение тока. Источником тока может быть, как и бытовая электросеть на 220 В, так и батарейка на 1,5 В и т.д.

    Собираясь измерять силу тока в цепи обратите тщательное внимание, какой ток протекает в цепи, постоянный или переменный. Возьмите соответствующий измерительный прибор и если не знаете предполагаемую силу тока в цепи, поставьте переключатель измерения силы тока в максимальное положение.

    Рассмотрим подробно как измерить силу тока электроприбором.

    Для безопасности измерения потребляемого тока электроприборами сделаем самодельный удлинитель с двумя розетками. После сборки получим удлинитель очень похожий на стандартный магазинный удлинитель.

    Но если разобрать и сравнить между собой, самодельный и магазинный удлинитель, то во внутренней структуре четко увидим отличия. Выводы внутри розеток самодельного удлинителя соединены последовательно, а в магазином соединены параллельно.

    На фотографии прекрасно видно, что верхние выводы соединены между собой проводом желтого цвета, а на нижние клеммы розеток подается сетевое напряжение.

    Теперь приступаем к измерению тока, для этого вставляем в одну из розеток вилку электроприбора, а в другую розетку, щупы амперметры. Перед измерением тока, не забываем прочитанную информацию про то, как надо правильно и безопасно измерять ток.

    Теперь рассмотрим как правильно интерпретировать показания стрелочного амперметра. При измерении потребляемого тока прибора стрелка амперметра остановилась на делении 50, переключатель был установлен на максимальный предел измерения в 3 Ампера. Шкала моего амперметра имеет 100 делений. Значит, легко определить измеренную силу тока по формуле (3/100) Х 50=1,5 Ампера.

    Формула расчета мощности прибора по потребляемой силе тока.

    Обладая данными о размере силы тока потребляемым любым электроприбором (телевизор, холодильник, утюг, сварка и т.д.), можно с легкостью определить, какая у этого электроприбора потребляемая мощность. В мире существует физическая закономерность, которому всегда подчиняется электричество. Первооткрыватели этой закономерности Эмиль Ленц и Джеймс Джоуль и в честь них, она теперь называется Закон Джоуля – Ленца.

    • I – сила тока, измеряемая в Амперах (А);
    • U – напряжение, измеряемое в Вольтах (В);
    • P – мощность, измеряемая в Ваттах (Вт).

    Проведем один из расчетов тока.

    Измерил ток потребления холодильника и он равняется 7 Амперам. Напряжение в сети равно 220 В. Следовательно, потребляемая мощность холодильника равняется 220 В Х 7 А=1540 Вт.

    Классификация электроизмерительных приборов по принципу действия и другим параметрам

    1. Конструкция и области применения измерительных приборов
    2. Принцип работы
    3. Видео: принцип работы измерительных приборов
    4. Варианты классификации приборов измерения тока
    5. Виды конструкций
    6. Классификация по роду измеряемой величины
    7. Разделение по роду тока
    8. Способы отображения информации
    9. Иные варианты систематизации
    10. Обозначения приборов
    11. Класс точности электроизмерительных устройств
    12. Видео: классификация электроизмерительного оборудования

    Электроизмерительные приборы востребованы и представлены в большом разнообразии. Они применяются в промышленности, транспортной сфере и других областях деятельности. Устройства имеют особую систему обозначения и имеют классификацию по ряду признаков, которую необходимо знать перед применением приборов.

    Конструкция и области применения измерительных приборов

    Для измерения различных показателей электрического тока используют специальные приборы. Такие устройства разнообразны и классифицируются по нескольким критериям, что позволяет выбрать оптимальный вариант. Все варианты образуют отдельный класс, называющийся электроизмерительные приборы.

    Электроизмерительные приборы многообразны, так как необходимы в разных сферах деятельности

    Многие варианты приборов обязательно предполагают наличие дисплея, на котором отображается информация. Также в конструкции присутствуют переключатель или кнопка управления прибором. Разъёмы для подключения кабелей, корпус, кнопка включения/отключения тоже являются элементами электроизмерительных приборов.

    Дисплей или циферблат всегда присутствуют на приборах измерения электротока

    Устройства разного типа применяют в следующих сферах деятельности:

    • медицина;
    • связь и энергетика;
    • научные исследования;
    • бытовые условия;
    • транспортная промышленность;
    • производство любого типа.

    Простые или сложные модели приборов позволяют измерить силу тока и другие показатели электроэнергии. Для бытовых условий применяют простой вариант — счётчик электроэнергии, а в промышленности используются более сложные и профессиональные устройства. Таким образом, для электроизмерительных приспособлений каждого типа характерно определённое назначение.

    Принцип работы

    Большинство электроизмерительных устройств имеют принцип действия, основанный на том, что электроны двигаются по проводнику электроцепи и создают вокруг себя магнитное поле. Стрелка измерительного приспособления перемещается в этом поле, реагируя на его параметры. Чем ниже показатели магнитной зоны, тем меньше отклонения стрелки.

    Шкала и стрелка присутствуют на многих приборах и визуализируют особенности электрического тока

    При этом все приборы электроизмерительного типа по принципу действия разделяются на следующие виды:

    • магнитоэлектрические, в которых ток пропускается через особую рамку в виде нескольких витков изолированной проволоки. Она размещена между полюсами постоянного магнита, поля их взаимодейству­ют. Рамка и сидящая на одной с ней оси стрелка перемещаются на определённый угол, который пропорционален напряжению или току. Эти приспособления предоставляют точные данные, но без дополнительных устройств используются для определения небольших значений и лишь тока постоянного типа;
    • в электродинамических устройствах магнитное поле, в котором вращается рамка, получается не благодаря постоянному магниту, а с помощью катушки с током. У этих приборов имеются две катушки: неподвижная и подвижная (рамка, жёстко соединённая со стрелкой). Устройства оптимальны для измерения постоянного и непостоянного вариантов тока;
    • работа тепловых моделей осуществляется в результате нагревания током и удлинения проводников. Приборы используются как для постоянного, так и для тока переменного типа;
    • действие электростатических устройств основано на взаимной силе притяжения пластин. Это осуществляется в результате воздействия на них напряжения.

    Видео: принцип работы измерительных приборов

    Варианты классификации приборов измерения тока

    Все устройства, служащие для определения параметров электрического тока, классифицируются по нескольким признакам. В зависимости от сферы и цели применения подбирают нужный вариант.

    Дисплей может быть цифровым или в виде стрелки и шкалы

    Виды конструкций

    Классификация устройств по типу конструкции предполагает разделение приборов по внешним данным, форме, корпусу, типу дисплея или шкалы. В результате можно выделить несколько вариантов. Одним из них являются щитовые модели, которые представляют собой объёмный щит с кнопками управления и информационным табло.

    Цифровые приборы имеют дисплей, отображающий максимально точный результат измерений

    Стационарные не подлежат частому перемещению и устанавливаются для контроля параметров энергии в определённой зоне. В отличие от них более мобильны переносные варианты, которые позволяют провести работы в разных местах без необходимости перемещения массивного оборудования.

    Классификация по роду измеряемой величины

    Все электроизмерительные устройства классифицируются в зависимости от того, какую величину позволяют определить. Это необходимо для всестороннего изучения показателей напряжения, что важно в разных сферах деятельности. В результате классификации по роду определяемой величины можно выделить следующие виды оборудования:

    • амперметры необходимы для измерения тока;
    • омметры служат для определения сопротивлений;
    • ваттметры позволяют узнать мощность;
    • счётчики используют для учёта энергии;
    • частотомеры нужны для определения частот тока переменного типа;
    • угол сдвига фаз измеряют фазометры;
    • узнать малые величины помогают гальванометры;
    • осциллографы определяют часто меняющиеся показатели.

    Осциллограф имеет сложную конструкцию, помогающую получить точный результат

    Каждый прибор имеет определённое назначение, но многие из них имеют схожий принцип работы. Оборудование может быть разного размера, а производители представляют широкий выбор вариантов.

    Разделение по роду тока

    Электрический ток может быть нескольких видов и в зависимости от этого подбирают приборы для его измерения. В результате такого подхода можно выделить изделия, предназначенные для измерения и используемые лишь в цепях постоянного тока. Существуют варианты, которые применяют только в цепях с переменным электричеством. Более универсальны модели, подходящие для работы с обеими цепями.

    Способы отображения информации

    Существует два варианта: цифровые и аналоговые. Под цифровыми устройствами подразумевают приборы, осуществляющие в процессе измерения автоматическое преобразование определяемой величины в дискретную. При этом величина является непрерывной, а полученный результат отображается на цифровом дисплее или регистрируется цифропечатающим оборудованием.

    Цифровой дисплей характеризуется чёткостью отображения

    Главное преимущество цифровых моделей по сравнению с иными вариантами заключается в том, что полученный результат измерений может быть преобразован математически или физически без повышения погрешности. Одним из представителей такого вида приборов является цифровой вольтметр. Востребованы также амперметры, фазометры, частотомеры.

    Аналоговые варианты часто оснащены шкалой и стрелкой. Оборудование характеризуется тем, что при измерении показатель входного сигнала преобразуется в показатель выходного импульса. Результат показывает стрелка, направленная на градуированную шкалу, имеющую определённый предел.

    Шкала со стрелкой имеет определённый диапазон измерений

    Три блока являются составляющими аналоговой конструкции: блок сравнения, первичный преобразователь, устройство ввода информации. Элементы соединены в систему и взаимосвязаны друг с другом.

    Иные варианты систематизации

    Электроизмерительные устройства широко используются и классифицируют не только по вышеперечисленным критериям, но и по другим особенностям. Часто разделение осуществляется по следующим параметрам:

    • назначение, то есть оборудование может быть вспомогательным, для измерений, бытового или профессионального применения;
    • система выдачи итогового результата, в зависимости от чего изделия могут быть регистрирующими или с выводом информации на экран;
    • способ измерения. Оборудование может быть использовано для сравнения или оценки показателей.

    Обозначения приборов

    Производители при маркировке изделий указывают определённые обозначения, которые отражают информацию о принципе действия оборудования. Прописная буква в маркировке указывает на тип работы устройства. Основными являются следующие варианты:

    • «М» или «К» означают, что прибор модернизированный или контактный;
    • «Д» — электродинамическое устройство;
    • «Н» означает, что конструкция самопишущая;
    • «Р» указывает на преобразователи измерительного типа;
    • индукционные устройства обозначаются буквой «И»;
    • «Л» — это логометры.

    Разнообразные приборы имеют множество вариантов классификации

    При выборе конкретного устройства учитывают обозначения в маркировке. Перед первым использованием нового оборудования требуется его настройка, выполняющаяся согласно инструкции.

    Класс точности электроизмерительных устройств

    Помимо иных характеристик, важное значение имеет и класс точности, который отражает особенности прибора. Точность зависит от допустимой предельной погрешности, которая может возникнуть в результате конструктивных особенностей конкретного оборудования. Выделяют по ГОСТу такие классы точности, как: 4,0 и 0,05; 0,1 и 0,2, а также 0,5 и 1,0, 1,5 и 2,5. Класс не превышает относительной погрешности устройства, определяющейся по формуле: — ɣ = ∆x / xпр * 100%. При этом ɣ — приведённая погрешность, ∆x — абсолютная погрешность, а xпр является измеряемым параметром.

    Видео: классификация электроизмерительного оборудования

    Оборудование для измерения разных показателей электротока представлено множеством моделей и типов. Выбор правильного устройства является залогом точных измерений и эффективной работы приборов.

    Прибор для измерения силы тока. Как измерить силу тока мультиметром

    28 Ноя 2016г | Раздел: Радио для дома

    Здравствуйте, уважаемые читатели сайта sesaga.ru. Ток или силу тока определяют количеством электронов, проходящих через точку или элемент схемы в течение одной секунды. Так, например, через нить накала горящей лампы накаливания карманного фонаря ежесекундно проходит около 2 000 000 000 000 000 000 (два триллиона) электронов. Однако на практике измеряется не количество электронов, а их движение, выраженное в амперах (А).

    Ампер – это единица электрического тока, которую так назвали в честь французского физика и математика А. Ампера изучавшего взаимодействие проводников с током. Экспериментально установлено, что при токе в 1А через точку или элемент схемы проходит около 6 250 000 000 000 000 000 электронов.

    Помимо ампера применяют и более мелкие единицы силы тока: миллиампер (мA), равный 0,001 А, и микроампер (мкA), равный 0,000001 А или 0,001 мА. Следовательно: 1 А = 1000 мА = 1 000 000 мкА.

    1. Прибор для измерения силы тока.

    Как и напряжение, ток бывает постоянный и переменный. Приборы, служащие для измерения тока, называют амперметрами, миллиамперметрами и микроамперметрами. Так же, как и вольтметры, амперметры бывают стрелочными и цифровыми.

    На электрических схемах приборы обозначаются кружком и буквой внутри: А (амперметр), мА (миллиамперметр) и мкА (микроамперметр). Рядом с условным обозначением амперметра указывается его буквенное обозначение «» и порядковый номер в схеме. Например. Если амперметров в схеме будет два, то около первого пишут «PА1», а около второго «PА2».

    Для измерения тока амперметр включается непосредственно в цепь последовательно с нагрузкой, то есть в разрыв цепи питания нагрузки. Таким образом, на время измерения амперметр становится как бы еще одним элементом электрической цепи, через который протекает ток, но при этом в схему амперметр никаких изменений не вносит. На рисунке ниже изображена схема включения миллиамперметра в цепь питания лампы накаливания.

    Также надо помнить, что амперметры выпускаются на разные диапазоны (шкалы), и если при измерении использовать прибор с меньшим диапазоном по отношению к измеряемой величине, то прибор можно повредить. Например. Диапазон измерения миллиамперметра составляет 0…300 мА, значит, силу тока измеряют только в этих пределах, так как при измерении тока свыше 300 мА прибор выйдет из строя.

    2. Измерение силы тока мультиметром.

    Измерение силы тока мультиметром практически ни чем не отличается от измерения обыкновенным амперметром или миллиамперметром. Разница состоит лишь в том, что у обычного прибора всего один диапазон измерения, рассчитанный на определенную максимальную величину тока, тогда как у мультиметра диапазонов несколько, и перед измерением приходится определять каким из диапазон пользоваться в данный момент.

    Обычные мультиметры, не профессиональные, рассчитаны на измерение постоянного тока и имеют четыре поддиапазона, что на бытовом уровне вполне достаточно. У каждого поддиапазона есть свой максимальный предел измерения, который обозначен цифровым значением: 2m, 20m, 200m, 10А. Например. На пределе «20m» можно измерять постоянный ток в диапазоне 0…20 мА.

    Для примера измерим ток, потребляемый обычным светодиодом. Для этого соберем схему, состоящую из источника напряжения (пальчиковой батарейки) GB1 и светодиода VD1, а в разрыв цепи включим мультиметр РА1. Но перед включением мультиметра в схему подготовим его к проведению измерений.

    Измерительные щупы вставляем в гнезда мультиметра, как показано на рисунке:

    красный щуп называют плюсовым, и вставляется он в гнездо, напротив которого изображены значки измеряемых параметров: «VΩmA»;
    черный щуп является минусовым или общим и вставляется он в гнездо, напротив которого написано «СОМ». Относительно этого щупа производятся все измерения.

    В секторе измерения постоянного тока выбираем предел «2m», диапазон измерения которого составляет 0…2 мА. Подключаем щупы мультиметра согласно схеме и затем подаем питание. Светодиод загорелся, и его потребление тока составило 1,74 мА. Вот, в принципе, и весь процесс измерения.

    Однако этот вариант измерения подходит тогда, когда величина потребления тока известна. На практике же часто возникает ситуация, когда необходимо измерить ток на каком-либо участке цепи, величина которого неизвестна или известна приблизительно. В таком случае измерение начинают с самого высокого предела.

    Предположим, что потребление тока светодиодом неизвестно. Тогда переключатель переводим на предел «200m», который соответствует диапазону 0…200 мА, и после этого щупы мультиметра включаем в цепь.

    Затем подаем напряжение и смотрим на показания мультиметра. В данном случае показания тока составили «01,8», что означает 1,8 мА. Однако нолик впереди указывает на то, что можно снизиться на предел «20m».

    Отключаем питание. Переводим переключатель на предел «20m». Включаем питание и опять производим измерение. Показания составили 1,89 мА.

    Часто бывает ситуация, когда при измерении тока или напряжения на индикаторе появляется единица. Единица говорит о том, что выбран низкий предел измерения и он меньше величины измеряемого параметра. В этом случае необходимо перейти на предел выше.

    Также может возникнуть момент, когда измеряемый ток выше 200 мА и необходимо перейти на предел измерения «10А». Однако здесь есть нюанс, который надо запомнить. Помимо того, что переключатель переводится на предел «10А», еще также необходимо переставить плюсовой (красный) щуп в крайнее левое гнездо, напротив которого стоит цифро-буквенное значение «10А», указывающее, что это гнездо предназначено для измерения больших токов.

    И еще совет. Возьмите за правило: когда закончите все измерения на пределе «10А» сразу же переставляйте плюсовой (красный) щуп на свое штатное место. Этим Вы сбережете себе нервы, щупы и мультиметр.

    Ну вот, в принципе и все, что хотел сказать об измерении тока мультиметром. Главное понимать, что при измерении напряжения вольтметр подключается параллельно нагрузке или источнику напряжения, тогда как при измерении силы тока амперметр включается непосредственно в цепь и через него протекает ток, которым питаются элементы схемы.

    Ну и в качестве закрепления прочитанного предлагаю посмотреть видеоролик, в котором на примере схем рассказывается об измерениях напряжения и силы тока мультиметром.

    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий