Как подключить светодиодную ленту к ардуино

Светодиоды и ленты

Обычные светодиоды

Светодиод – простейший индикатор, который можно использовать для отладки кода: его можно включить при срабатывании условия или просто подмигнуть. Но для начала его нужно подключить.

Подключение светодиода

Светодиод – это устройство, которое питается током, а не напряжением. Как это понимать? Яркость светодиода зависит от тока, который через него проходит. Казалось бы, достаточно знания закона Ома из первого урока в разделе, но это не так!

  • Светодиод в цепи нельзя заменить “резистором”, потому что он ведёт себя иначе, нелинейно.
  • Светодиод полярен, то есть при неправильном подключении он светиться не будет.
  • Светодиод имеет характеристику максимального тока, на котором может работать. Для обычных 3 и 5 мм светодиодов это обычно 20 мА.
  • Светодиод имеет характеристику падение напряжения (Forward Voltage), величина этого падения зависит от излучаемого цвета. Цвет излучается кристаллом, состав которого и определяет цвет. У красных светодиодов падение составляет

2.5 вольта, у синих, зелёных и белых

3.5 вольта. Более точную информацию можно узнать из документации на конкретный светодиод. Если документации нет – можно пользоваться вот этой табличкой, тут даны минимальные значения:

Если питать светодиод напряжением ниже его напряжения падения, то яркость будет не максимальная, и здесь никаких драйверов не нужно. То есть красный светодиод можно без проблем питать от пальчиковой батарейки. В то же время кристалл может деградировать и напряжение уменьшится, что приведёт к росту тока. Но это редкий случай. Как только мы превышаем напряжение падения – нужно стабилизировать питание, а именно – ток. В простейшем случае для обычного светодиода ставят резистор, номинал которого нужно рассчитать по формуле: R = (Vcc – Vdo) / I , где Vcc это напряжение питания, Vdo – напряжение падения (зависит от светодиода), I – ток светодиода, а R – искомое сопротивление резистора. Посчитаем резистор для обычного 5 мм светодиода красного цвета при питании от 5 Вольт на максимальной яркости (2.5 В, 20 мА): (5-2.5)/0.02=125 Ом. Для синего и зелёного цветов получится 75 Ом. Яркость светодиода нелинейно зависит от тока, поэтому “на глаз” при 10 мА яркость будет такая же, как на 20 мА, и величину сопротивления можно увеличить. А вот уменьшать нельзя, как и подключать вообще без резистора. В большинстве уроков и проектов в целом для обычных светодиодов всех цветов ставят резистор номиналом 220 Ом. С резистором в 1 кОм светодиод тоже будет светиться, но уже заметно тусклее. Таким образом при помощи резистора можно аппаратно задать яркость светодиода. Как определить плюс (анод) и минус (катод) светодиода? Плюсовая нога длиннее, со стороны минусовой ноги бортик чуть срезан, а сам электрод внутри светодиода – крупнее:

Мигаем

Мигать светодиодом с Ардуино очень просто: подключаем катод к GND, а анод – к пину GPIO. Очень многие уверены в том, что “аналоговые” пины являются именно аналоговыми, но это не так: это обычные цифровые пины с возможностью оцифровки налогового сигнала. На плате Nano пины A0-A5 являются цифровыми и аналоговыми одновременно, а вот A6 и A7 – именно аналоговыми, то есть могут только читать аналоговый сигнал. Так что подключимся к A1, настраиваем пин как выход и мигаем!

Как избавиться от delay() в любом коде я рассказывал вот в этом уроке. https://www.youtube.com/watch?v=uaiLcCd9Tnk

Мигаем плавно

Как насчёт плавного управления яркостью? Вспомним урок про ШИМ сигнал и подключим светодиод к одному из ШИМ пинов (на Nano это D3, D5, D6, D9, D10, D11). Сделаем пин как выход и сможем управлять яркостью при помощи ШИМ сигнала! Читай урок про ШИМ сигнал. Простой пример с несколькими уровнями яркости:

Подключим потенциометр на A0 и попробуем регулировать яркость с его помощью:

Как вы можете видеть, все очень просто. Сделаем ещё одну интересную вещь: попробуем плавно включать и выключать светодиод, для чего нам понадобится цикл из урока про циклы.

Плохой пример! Алгоритм плавного изменения яркости блокирует выполнение кода. Давайте сделаем его на таймере аптайма.

Теперь изменение яркости не блокирует выполнение основного цикла, но и остальной код должен быть написан таким же образом, чтобы не блокировать вызовы функции изменения яркости! Ещё одним вариантом может быть работа по прерыванию таймера, см. урок.

Ещё один момент: если подключить светодиод наоборот, к VCC, то яркость его будет инвертирована: 255 выключит светодиод, а 0 – включит, потому что ток потечет в другую сторону:

Светодиодные ленты

Светодиодная лента представляет собой цепь соединённых светодиодов. Соединены они не просто так, например обычная 12V лента состоит из сегментов по 3 светодиода в каждом. Сегменты соединены между собой параллельно, то есть на каждый приходят общие 12 Вольт. Внутри сегмента светодиоды соединены последовательно, а ток на них ограничивается общим резистором (могут стоять два для более эффективного теплоотвода): Таким образом достаточно просто подать 12V от источника напряжения на ленту и она будет светиться. За простоту и удобство приходится платить эффективностью. Простая математика: три белых светодиода, каждому нужно по

3.2V, суммарно это 9.6V. Подключаем ленту к 12V и понимаем, что 2.5V у нас просто уходят в тепло на резисторах. И это в лучшем случае, если резистор подобран так, чтобы светодиод горел на полную яркость.

Подключаем к Arduino

Здесь всё очень просто: смотрите предыдущий урок по управлению нагрузкой постоянного тока. Управлять можно через реле, транзистор или твердотельное реле. Нас больше всего интересует плавное управление яркостью, поэтому продублирую схему с полевым транзистором: Конечно же, можно воспользоваться китайским мосфет-модулем! Пин VCC кстати можно не подключать, он никуда не подведён на плате.

Управление

Подключенная через транзистор лента управляется точно так же, как светодиод в предыдущей главе, то есть все примеры кода с миганием, плавным миганием и управление потенциометром подходят к этой схеме. Про RGB и адресные светодиодные ленты мы поговорим в отдельных уроках.

Питание и мощность

Светодиодная лента потребляет немаленький ток, поэтому нужно убедиться в том, что выбранный блок питания, модуль или аккумулятор справится с задачей. Но сначала обязательно прочитайте урок по закону Ома! Потребляемая мощность светодиодной ленты зависит от нескольких факторов:

  • Яркость. Максимальная мощность будет потребляться на максимальной яркости.
  • Напряжение питания (чаще всего 12V). Также бывают 5, 24 и 220V ленты.
  • Качество, тип и цвет светодиодов: одинаковые на вид светодиоды могут потреблять разный ток и светить с разной яркостью.
  • Длина ленты. Чем длиннее лента, тем больший ток она будет потреблять.
  • Плотность ленты, измеряется в количестве светодиодов на метр. Бывает от 30 до 120 штук, чем плотнее – тем больший ток будет потреблять при той же длине и ярче светить.

Лента всегда имеет характеристику мощности на погонный метр (Ватт/м), указывается именно максимальная мощность ленты при питании от номинального напряжения. Китайские ленты в основном имеют чуть меньшую фактическую мощность (в районе 80%, бывает лучше, бывает хуже). Блок питания нужно подбирать так, чтобы его мощность была больше мощности ленты, т.е. с запасом как минимум на 20%.

    Пример 1: нужно подключить 4 метра ленты с мощностью 14 Ватт на метр, лента может работать на максимальной яркости. 14*4 == 56W, с запасом 20% это будет 56*1.2

70W, ближайший блок питания в продаже будет скорее всего на 100W.

  • Пример 2: берём ту же ленту, но точно знаем, что яркость во время работы не будет больше половины. Тогда можно взять блок на 70 / 2 == 35W.
  • Важные моменты по току и подключению:

    • Подключение: допустим, у нас подключено ленты на 100W. При 12 Вольтах это будет 8 Ампер – весьма немаленький ток! Ленту нужно располагать как можно ближе к блоку питания и подключать толстыми (2.5 кв. мм и толще) проводами. Также при создании освещения есть смысл перейти на 24V ленты, потому что ток в цепи будет меньше и можно взять более тонкие провода: если бы лента из прошлого примера была 24-Вольтовой, ток был бы около 4 Ампер, что уже не так “горячо”.
    • Дублирование питания: лента сама по себе является гибкой печатной платой, то есть ток идёт по тонкому слою меди. При подключении большой длины ленты ток будет теряться на сопротивлении самой ленты, и чем дальше от точки подключения – тем слабее она будет светить. Если требуется максимальная яркость на большой длине, нужно дублировать питание от блока питания дополнительными проводами, или ставить дополнительные блоки питания вдоль ленты. Дублировать питание рекомендуется каждые 2 метра, потому что на такой длине просадка яркости становится заметной уже почти на всех лентах.
    • Охлаждение: светодиоды имеют не 100% КПД, плюс ток в них ограничивается резистором, и как результат – лента неслабо греется. Рекомендуется приклеивать яркую и мощную ленту на теплоотвод (алюминиевый профиль). Так она не будет отклеиваться и вообще проживёт гораздо дольше.

    Видео


    Светодиодная лента Ардуино.

    Светодиодная лента Ардуино

    Рынок светодиодного освещения набирает бешеные обороты, и не сложно понять, почему. Они дешевы для производства, потребляют значительно меньше энергии, чем другие варианты освещения, и в большинстве случаев не нагреваются, что делает их безопасными для самых разных целей.
    Одним из самых популярных светодиодных продуктов является LED-лента. В этой статье мы рассмотрим, как настроить два наиболее распространенных типа светодиодных лент на Arduino. Эти проекты очень просты, и даже если вы новичок в электронике Arduino или DIY, вы сможете это сделать.
    Мы также будем использовать IDE Arduino для их контроля. В этом проекте используется Arduino Uno, хотя вы можете взять практически любую совместимую плату (например, NodeMCU).
    Здесь ссылки на все описанные в статье устройсва и материалы. Перейдя по ссылкам ниже вы сможете купить себе светодиодные ленты и Ардуино по партнерской цене.
    Arduino по лучшей цене с дополнительной скидкой от Lightru SPI светодиодная лента – отличного качества – по партнерской цене

    Руководство по выбору светодиодных лент к Arduino.

    При покупке светодиодных лент есть несколько вещей, которые следует учитывать. Во-первых, это функциональность. Если вы планируете использовать устройства в основном для окружающего освещения, то правильным выбором станет простая диодная полоса 12 В RGB (SMD5050).
    Многие приборы поставляются с инфракрасным пультом для управления ими, хотя в этом проекте мы будем использовать Arduino. Потратьте немного времени на покупки. На момент написания статьи метр ленты можно было купить всего за 1 доллар.
    Если вы хотите что-то более высокотехнологичное, рассмотрите SPI RGB ленту.

    Эти полосы, иногда называемые Neopixels, имеют интегрированные чипсеты, которые позволяют им управлять каждым диодом поодиночке. Это означает, что они способны на большее, чем просто дополнительное освещение. Вы можете использовать их для создания дешевого светодиодного дисплея с нуля. Из лент можно соорудить даже собственную домашнюю тучку с извергающими молниями. Или бегущую светодиодную ленту.

    Подробне о SPI RGB лентах вы можете прочитать здесь.

    Эти полосы требуют всего 5 В для полноценного питания. Несмотря на то, что можно подавать небольшое количество мощности непосредственно с платы Arduino, обычно рекомендуется использовать отдельный источник питания 5 В, чтобы избавиться от запаха гари. Если вы ищете индивидуально программируемые светодиоды, светодиодная лента Ардуино — лучшая находка для вас. В данный момент стоимость 1 метра равняется примерно 4 долларам — 270 рублям.
    Еще одна вещь, которую следует учитывать, – это то, где ленты, вероятно, будут использоваться. Оба типа полосы имеют различную длину, плотность светодиодов – количество диодов на метр – и разную степень защиты от атмосферных воздействий.
    Осматривая светодиодную ленту, обратите внимание на цифры в листинге. Обычно первым номером будет количество светодиодов на метр, а буквы IP, за которыми следуют цифры, будут его степенью защищенности.

    Например, если в списке указано «30 IP67», это означает, что на метр будет 30 светодиодов. «6» — признак того, что устройство полностью защищено от пыли. «7» значит, что прибор не пострадает от непродолжительного погружения в воду. После того, как вы приобретете светодиодную полоску, придет время связать ее с Arduino. Начнем с SMD5050.

    Светодиодная лента Ардуино – Подключение

    Чтобы подключить 12v светодиодную ленту к Arduino, вам понадобится несколько компонентов:
    ● 12v RGB светодиодная лента(SMD5050);
    ● 1 x Arduino Uno (любая совместимая плата подойдет);
    ● 3 x 10 кОм резисторов;
    ● 3 x логических уровня N-канальных МОП-транзисторов (MOSFET);
    ● 1 х макет;
    ● Монтажные провода;
    ● Блок питания на 12 В.

    Подключение адресной светодиодной ленты к Ардуино

    Прежде чем настраивать схему светодиодная лента Ардуино, давайте поговорим о МОП-структуре — MOSFET.

    Всякий раз, когда вы управляете прибором с более высоким напряжением, чем у вашего микроконтроллера, вам нужно установить что-нибудь между ними, чтобы избежать поломки или даже возгорания. Один из простых способов сделать это – использовать MOSFET. Передавая сигналы широтно-импульсной модуляции (ШИМ), вы можете контролировать количество энергии, проходящее между стоками и источником. Пропустив каждый из цветов светодиодной полосы через МОП-транзисторы, вы можете регулировать яркость каждого цвета на светодиодной ленте.
    При использовании микроконтроллеров не забывайте о компонентах логического уровня для обеспечения стабильной работы. Убедитесь, что ваши МОП-транзисторы являются логическим уровнем, а не стандартным.

    Настройте свою схему следующим образом:

    1. Подключите контакты Arduino 9, 6 и 5 к концам затвора трех МОП-транзисторов и подключите резистор 10 кОм в соответствии с заземлением.
    2. Подключите ножки источника к заземлению.
    3. Подключите дренажные опоры к разъемам Green, Red и Blue на светодиодной ленте.
    4. Подключите шину питания к разъему +12v светодиодной полосы (обратите внимание, что на изображении выше провод питания черный, чтобы соответствовать цветам разъемов на моей светодиодной полосе).
    5. Подключите заземление Arduino.
    6. Подключите стабилизатор питания 12 В в сеть.
    Большинство светодиодных полосок имеет разъемы Dupont, к которым легко подключиться. Если у вас нет таких, вам понадобится припаять провода к диодной ленте. Не паникуйте, если вы новичок в пайке — это легкая работа. В интернете есть множество руководств по началу работы с паяльником, с которыми можно ознакомиться, если пайка доставляет вам трудности.
    Для этого проекта мы будем управлять нашей платой Arduino по USB . Вы можете выбрать питание платы с помощью вывода VIN, но перед этим убедитесь, что вы знаете ограничения мощности для своего устройства.

    После всех процедур схема и Светодиодная лента Ардуино должна выглядеть примерно так:

    Теперь, когда вы все связали, пришло время сделать простой код Arduino, чтобы контролировать его.

    Светодиодная лента Ардуино – написание кода.

    Подключите плату Arduino к компьютеру через USB и откройте Arduino IDE. Убедитесь, что у вас правильный номер платы и порта, выбранный для вашей платы, в меню «Сервис»> «Сервис и инструменты»> «Порт». Откройте новый эскиз и сохраните его с соответствующим именем.
    Этот эскиз затухает с одноцветными огнями, держит их в таком состоянии в течение нескольких секунд, а затем исчезает, пока они не погаснут снова.

    Вы можете сделать эскиз самостоятельно или просто загрузить готовый код из GitHub (https://gist.github.com/anonymous/d4fa3719478c3c5a9c321cc372e9540).

    Начните с определения штырей, которые будут использоваться для управления МОП-транзисторами.

    #define RED_LED 6
    #define BLUE_LED 5
    #define GREEN_LED 9

    Затем вам понадобятся переменные. Создайте общую переменную яркости вместе с переменной для яркости каждого цвета. Мы будем использовать только основную переменную яркости для выключения светодиодов, поэтому установите здесь максимальное значение 255.
    Вам также потребуется создать переменную, чтобы контролировать скорость замирания.

    int brightness = 255;
    int gBright = 0;
    int rBright = 0;
    int bBright = 0;
    int fadeSpeed = 10;

    В вашей настройке мы установим выводы Arduino. Мы также будем вызывать пару функций с задержкой в 5 секунд. Этих функций еще не существует, но не беспокойтесь, мы доберемся до них.

    void setup() <
    pinMode(GREEN_LED, OUTPUT);
    pinMode(RED_LED, OUTPUT);
    pinMode(BLUE_LED, OUTPUT);

    TurnOn();
    delay(5000);
    TurnOff();
    >
    Теперь создайте метод TurnOn ():
    void TurnOn() <
    for (int i = 0; i “>

    Ардуино и адресная светодиодная лента

    Этот проект – простой способ начать работу, но идеи, которые он охватывает, могут быть расширены для действительно эффектного освещения. С помощью всего лишь нескольких компонентов вы можете создать свой собственный восход солнца. Если у вас есть стартовый комплект с Arduino, вы можете использовать любую кнопку или датчик для запуска светодиодов при входе в комнату, например:

    Как мы видим, при открытии двери светодиодная лента Ардуино плавно зажигается и встречает человека.

    Теперь, когда мы рассмотрели схему с обычной светодиодной лентой, перейдем к адресным светодиодным лентам SPI RGB лента.

    Светодиодная лента Ардуино – Яркие идеи.

    Эти ленты требуют меньшего количества компонентов для запуска, и есть некоторая свобода в отношении именно того, какие значения компонентов вы можете использовать. Конденсатор в этой цепи гарантирует, что светодиоды 5v получают постоянный источник питания. Резистор становится гарантом того, что сигнал данных, полученный от Arduino, не загружен всяческими помехами.

    ● Светодиодная лента 5v WS2811/12/12B; Все три модели имеют встроенные микросхемы и работают одинаково.

    ● 1 x Arduino Uno или аналогичная совместимая плата;

    ● 1 x резистор 220-440 Ом;

    ● 1 x конденсатор microFarad 100-1000 (все, что между этими двумя значениями, отлично подойдет);

    ● Макет и монтажные провода;

    ● Блок питания 5 В.

    Настройте схему, как показано на рисунке:

    Обратите внимание, что конденсатор должен быть правильной ориентации.

    Вы можете понять, какая сторона прикрепляется к рейке земля, ища знак минуса (-) на корпусе конденсатора. На этот раз мы задействуем Arduino, используя источник питания 5 В. Это позволит устройству работать автономно.

    Во-первых, убедитесь, что ваша плата может работать с 5 В, прежде чем присоединить ее к источнику питания. Почти все платы работают на 5V через USB-порт, но штыри питания на некоторых могут иногда пропускать регуляторы напряжения и превращать их в поджаренные тосты.

    Кроме того, рекомендуется убедиться, что несколько отдельных источников питания не подключены к Arduino – отсоединяйте USB-кабель всякий раз, когда используете внешний источник питания.

    После того, как все подключено, прибор должен выглядеть так:

    Светодиодная лента Ардуино – Бегущий огонь или световая волна

    Чтобы безопасно запрограммировать нашу плату, отсоедините линию VIN от линии электропередач. Вы подключите ее позже обратно.

    Присоедините свой Arduino к компьютеру и откройте Arduino IDE. Убедитесь, что у вас правильный номер платы и порта, выбранный в меню «Сервис»> «Сервис и инструменты»> «Порт».

    Мы будем использовать библиотеку FastLED для тестирования нашей установки. Вы можете добавить библиотеку, нажав на Эскиз> Включить библиотеку> Управление библиотеками и поиск FastLED. Нажмите «Установить», и библиотека будет добавлена в среду IDE.

    В разделе «Файл»> «Примеры»> «FastLED» выберите эскиз DemoReel100. В этом эскизе задействованы различные эффекты, которые можно сделать с помощью светодиодных полос WS2812, и невероятно легко настроить.

    Все, что вам нужно изменить, — это переменная DATA_PIN, чтобы она соответствовала значку 13 и переменной NUM_LEDS для определения количества светодиодов, находящихся в полосе, которую вы используете. В этом случае я применяю только небольшую линию из 10 светодиодов, вырезанных из более длинной полосы.

    Используйте большее количество для красивейшего светового шоу!

    Вот и все!

    Загрузите эскиз на свою плату, отсоедините USB-кабель и включите источник питания 5 В.

    Инструкция по подключению Arduino к адресной светодиодной ленте

    На сегодня это наша третья статья. В прошлых статьях мы уже разобрали, что из себя представляет адресная лента и примерно поняли, как она устроена. А также поговорили о плате Arduino Nano , по средствам которой мы буем управлять лентой, установили необходимое программное обеспечения и даже написали свою первую программу. Теперь же пришло время подключить все вместе и сделать простую световую анимацию.

    Для начала необходимо разобраться с потреблением светодиодной ленты. Дело в том, что каждый светодиод в пикселе потребляет до 20 мА, в зависимости от яркости его свечения. Напомню, что яркость свечения задаем мы сами из программы. Итого получается, что каждый пиксель может потреблять до 60 мА. Это довольно много, если учитывать, что мы можем использовать несколько метров ленты. Но в рамках данной статьи я буду экспериментировать с отрезком на 5 пикселей. И по этой причине запитаю адресную ленту прямо от Arduino Nano . Хотя я бы сам не рекомендовал так делать, лучше всего ставить отдельный блок питания и подключить ленту к нему, а с МК реализовать только управление.

    Как мы помним из прошлых статей, управление будет осуществлено любым из цифровых выходов с D 2 по D 13. В данном случае я решил использовать D 5 (просто для примера, Вы можете использовать любой). Итак, подключаем ленту к Arduino Nano . GND к GND , +5 V к +5 V и D – input к D 5 на плате Nano . Я не стал ничего придумывать и просто припаял. Визуально выглядит адресная лента подключенная к Ардуино:

    А вот схема подключения адресной ленты к Arduino:

    Тут главное помнить, что адресная светодиодная лента имеет направление и важно не перепутать к какому концу ленты подключать плату Arduino. Но об этом я уже говорил в прошлых статьях и больше заострять на этом внимание не будем.

    Следующим действием предлагаю подключить плату Адруино к компьютеру и уже заняться написанием нашей первой программы под адресную светодиодную ленту.

    Пишем программу для управления адресной светодиодной лентой через Arduino. Установка библиотеки

    Первый раз – это всегда очень волнительно. В первый раз можно наделать кучу ошибок, причем в последствии понимаешь, что данные ошибки и нарочно придумать сложно, не то, чтобы их случайно допустить, и это касается не только программирования. Но для того я и пишу данную статью, чтобы максимально облегчить путь от идеи до результата. Сейчас я достаточно подробно опишу все, что буду делать. Это поможет сформировать в голове новичка четкое представление о подключении Arduino.

    Для начала давайте откроем IDE Arduino . Это программа, которую мы установили в одной из прошлых статей.

    Получилось? Отлично! Далее нам необходимо установить библиотеку. Это нужно, чтобы управлять адресной лентой. Дело в том, что лента принимает определенный набор команд, но нам, как молодым разработчикам, пока не интересно, что это за команды и как они устроены. Мы просто хотим управлять цветами. И библиотека управления адресной лентой поможет нам сделать это максимально просто и быстро. Мы будем сообщать программе, где какой цвет хотим видеть, а программа, с помощью библиотеки, будет формировать наборы команд, понятные для микросхем адресной ленты. На самом деле все достаточно просто и очевидно, нужно только привыкнуть. Поэтому нажимаем «Скетч» -> «Подключить библиотеку» – > «Управлять библиотеками».

    После этого появится окно «Менеджер библиотек». Кстати, данному окну нужно немного времени чтобы прогрузиться, поэтому пару секунд оно будет не активным, нужно подождать.

    На данный момент мы будем использовать библиотеку « Adafruit NeoPixel ». Проще всего будет воспользоваться поиском. Как видно, в списке есть похожие название, нужно быть внимательным и не перепутать.

    Следующим шагом нам необходимо установить библиотеку, для этого есть соответствующая кнопка. Нажимаем и ждем. После того, как установка будет завершена, кнопка «Установить» пропадет, зато появится выпадающий список, позволяющий выбрать версию. Пока что ничего менять не будем и просто закроем окно.

    Пишем программу для управления лентой через Ардуино

    И теперь мы приступаем к следующему этапу – написанию программы. Начнем с чего-то простого и потом будем постепенно совершенствовать. Наша первая программа будет выглядеть следующим образом:

    #define LED_COUNT 5

    #define LED_PIN 5

    Adafruit_NeoPixel strip = Adafruit_NeoPixel(LED_COUNT, LED_PIN, NEO_GRB + NEO_KHZ800);

    strip.begin(); //Инициализируем ленту.

    strip.setPixelColor(i, strip.Color(255, 0, 0)); // Красный цвет.

    strip.setPixelColor(i, strip.Color(0, 0, 0)); // null

    На первый взгляд это может показаться немного не понятным. Сейчас мы пройдемся по коду и используемые нами команды приобретут смысл.

    Начнем с первой строчки. Тут мы объявляем библиотеку. Дело в том, что перед этим мы только ее скачали, а чтобы использовать в программе, необходимо ее объявить. Для этого используется директива # include <>. Где в скобках указано имя файла, который будет использоваться при компиляции, как часть кода. В нашем случае это название библиотеки. Кстати да, библиотека – это файл с программой.

    Вторая и третья строчки, – тут мы задаем кол-во пикселей в нашей ленте и номер вывода, с которого будет организовано управление.

    Обратите внимание: речь идет именно о количестве пикселей, то есть чипов в ленте, а не о количестве светодиодов. В некоторых адресных лентах, например с чипом ws2811 и ws2818 управление происходит кратно 3 диодам, поэтому лента с 60 диодами на метр будет управляться всего 20 пикселями. Если у вас адресная лента ws2812b, ws2813 или ws2815, то управление происходит кратно одному диоду, то есть количество пикселей = количество светодиодов.

    Идем далее. Директива # define определяет идентификатор и последовательность символов, которой будет замещаться данный идентификатор при его обнаружении в коде. Давайте разберем вторую строку более подробно «#define LED_COUNT 5». «LED_COUNT» — это идентификатор, которому соответствует символ «5». Это позволит нам в теле программы (везде, где нужно) написать «5», писать «LED_COUNT». Возможно, это звучит немного непотяно, но подумайте вот о чем: нам пришло в голову изменить кол-во пикселей в ленте и тогда нам придется во всем коде менять их кол-во. Но благодаря # define , мы имеем возможность поменять всего лишь последовательность символов в идентификаторе. Понятное дело, в нашей программе возможно заменить все значения, потому что тут всего 2-а десятка строк. Но бывают и очень большие программы, где действия по замене потребуют огромного количества времени и терпения.

    В пятой строке мы объявляем экземпляр класса Adafruit_NeoPixel и передаем его конструктору значения о длине ленты, выводе управления и типу адресной ленты. В данной статье мы не будем разбирать само понятие классов, поэтому предлагаю просто принять данную строчку как должное, где в скобках мы передаем необходимые параметры. Скажу только одно: тут мы создали объект под именем « strip ». И этот объект полностью отвечает за работу подключенной ленты.

    В теле функции setup () мы сообщаем компилятору, что данный объект « strip » у нас будет использован. По сути, эту команду инициализации пока тоже нужно принять как необходимый минимум.

    А дальше у нас уже идет самое интересное – основная часть программы, в которой и происходит волшебство, она находится в теле функции loop (). Но перед этим необходимо ввести новое понятие – цикл.

    Цикл — это определенный блок программы, выполняющийся по кругу. Даже сама функция loop () является циклом. Циклы бывают конечными и бесконечными и у циклов так же, как и у функций, есть тело, где написаны повторяющиеся команды. В данной программе мы использовали цикл – for . Если данный цикл описан правильно, то он, как правило, конечен. Цикл for имеет 3 параметра «for(int i = 0; i Первый параметр задает начальное значение для переменной i . Кстати, в данном случае переменная i инициализируется при начале работы цикла и забывается при окончании работы цикла. Второй параметр – это условие, при котором цикл продолжает выполняться. В нашем случае цикл выполняется до тех пор, пока i меньше 5. И третий параметр прибавляет единицу к i , при каждом повторе цикла. Сейчас ограничимся этим коротким объяснением. В дальнейшем у меня выйдет короткая статья, посвящённая программированию.

    Итак, вернемся к программе. С 13-ой по 17-ую строку у нас расположен цикл, цикл на 5 повторений, где i меняется от 0 до 4 включительно.

    В 14-ой строке мы вызываем метод setPixel , объекта strip и передаем ему два параметра. Где i это номер пикселя на адресной ленте, а « s trip.Color(255, 0, 0)» его цвет. Про то, как задается цвет по системе RGB мы уже говорили ранее. Скажу только очевидную вещь, «255, 0, 0» – это максимально красный цвет.

    Получается, когда мы объявили объект strip и передали ему, что в нашей адресной ленте будет 5 пикселей, то в памяти было зарезервировано 5 ячеек, предназначенные для хранения цвета. И теперь в данном цикле мы их заполняем.

    В 15-ой строке расположена команда, которая выводит на ленту цвета из памяти в МК (микроконтроллер). То есть последовательность такая: сначала пишем цвета в память, потом разом выводим их на адресную ленту. Изначально пока мы еще не успели заполнить память, там хранятся нулевые цвета «0, 0, 0».

    И в 16-ой строке у нас стоит задержка в 300 млс.

    Получается, изначально мы имеем 5 ячеек памяти, где записаны только нулевые цвета. Потом в цикле поочередно в каждую из ячеек пишется красный цвет, выводится на ленту и происходит небольшая задержка.

    Теперь давайте разберем строки кода с 18-й по 23-ю. Тут происходит практически то же самое. В таком же цикле, мы обнуляем цвета, только это происходит без какой-либо задержки. И данные поступают на адресную ленту уже после выполнения всего цикла, то есть обнуления всех цветов. И уже после этого мы используем задержку.

    На мой взгляд все достаточно просто. Светодиоды поочередно загораются красным, а затем гаснут и все это происходит по кругу. Результат выполнения программы вы можете увидеть ниже.

    В данной статье мы написали свою первую программу для управления адресной лентой. Теперь Вы сами можете повторить это. Также Вы можете использовать не только красный цвет, но и самостоятельно поэкспериментировать с палитрой и более сложными цветами. А уже в следующих статьях мы постепенно усложним задачу.

    Управление светодиодной лентой при помощи Аrduino

    Ардуино идеально подходит для управления любыми устройствами. Микропроцессор ATmega с помощью программы-скетча манипулирует большим количеством дискретных выводов, аналогово-цифровых входов/выводов и ШИМ-контроллерами.

    Благодаря гибкости кода микроконтроллер ATmega широко используется в модулях различной автоматики, в том числе на его основе возможно создать контроллер управления светодиодным освещением.

    Принцип управления нагрузкой через Ардуино

    Плата Ардуино имеет два типа портов вывода: цифровой и аналоговый (ШИМ-контроллер). У цифрового порта возможно два состояния – логический ноль и логическая единица. Если подключить к нему светодиод он либо будет светиться, либо не будет.

    Аналоговый выход представляет собой ШИМ-контроллер, на который подаётся сигнал частотой около 500Гц с регулируемой скважностью. Что такое ШИМ-контроллер и принцип его работы можно найти в интернете. Через аналоговый порт возможно не только включать и выключать нагрузку, а и изменять напряжение (ток) на ней.

    Синтаксис команд

    pinMode(12, OUTPUT); — задаём порт 12 портом вывода данных;
    digitalWrite(12, HIGH); — подаём на дискретный выход 12 логическую единицу, зажигая светодиод.

    analogOutPin = 3; – задаём порт 3 для вывода аналогового значения;
    analogWrite(3, значение); – формируем на выходе сигнал с напряжением от 0 до 5В. Значение – скважность сигнала от 0 до 255. При значении 255 максимальное напряжение.

    Способы управления светодиодами через Ардуино

    Напрямую через порт можно подключить лишь слабый светодиод, да и то лучше через ограничительный резистор. Попытка подключить более мощную нагрузку выведет его из строя.

    Для более мощных нагрузок, в том числе светодиодных лент, используют электронный ключ – транзистор.

    Виды транзисторных ключей

    • Биполярный;
    • Полевой;
    • Составной (сборка Дарлингтона).
    Способы подключения нагрузки
    Через биполярный транзистор Через полевой транзистор Через коммутатор напряжения

    При подаче высокого логического уровня (digitalWrite(12, HIGH);) через порт вывода на базу транзистора через цепочку коллектор-эмиттер потечет опорное напряжение на нагрузку. Таким образом можно включать и отключать светодиод.

    Аналогичным образом работает и полевой транзистор, но поскольку у него вместо «базы» сток, который управляется не током, а напряжением, ограничительный резистор в этой схеме необязателен.

    Биполярный вид не позволяет регулировать мощные нагрузки. Ток через него ограничен на уровне 0,1-0,3А.

    Полевые транзисторы работают с более мощными нагрузками с током до 2А. Для ещё более мощной нагрузки используют полевые транзисторы Mosfet с током до 9А и напряжением до 60В.

    Вместо полевых можно использовать сборку Дарлингтона из биполярных транзисторов на микросхемах ULN2003, ULN2803.

    Микросхема ULN2003 и принципиальная схема электронного коммутатора напряжения:

    Принцип работы транзистора для плавного управления светодиодной лентой

    Транзистор работает как водопроводный кран, только для электронов. Чем выше напряжение, подаваемое на базу биполярного транзистора либо сток полевого, тем меньше сопротивление в цепочке эмиттер-коллектор, тем выше ток, проходящий через нагрузку.

    Подключив транзистор к аналоговому порту Ардуино, присваиваем ему значение от 0 до 255, изменяем напряжение, подаваемое на коллектор либо сток от 0 до 5В. Через цепочку коллектор-эмиттер будет проходить от 0 до 100% опорного напряжения нагрузки.

    Для управления светодиодной лентой arduino необходимо подобрать транзистор подходящей мощности. Рабочий ток для питания метра светодиодов 300-500мА, для этих целей подойдет силовой биполярный транзистор. Для большей длины потребуется полевой транзистор.

    Схема подключения LED ленты к ардуино:

    Управление RGB лентой с помощью Andurino

    Кроме однокристальных светодиодов, Ардуино может работать и с цветными LED. Подключив выводы каждого цвета к аналоговым выходам Ардуино можно произвольно изменять яркость каждого кристалла, добиваясь необходимого цвета свечения.

    Схема подключения к Arduino RGB светодиода:

    Аналогично построено и управление RGB лентой Arduino:

    Аrduino RGB контроллер лучше собирать на полевых транзисторах.

    Для плавного управления яркостью можно использовать две кнопки. Одна будет увеличивать яркость свечения, другая уменьшать.

    Скетч управления яркостью светодиодной ленты Arduino

    int led = 120; устанавливаем средний уровень яркости

    void setup() <
    pinMode(4, OUTPUT); устанавливаем 4й аналоговый порт на вывод
    pinMode(2, INPUT);

    pinMode(4, INPUT); устанавливаем 2й и 4й цифровой порт на ввод для опроса кнопок
    >
    void loop()<

    button1 = digitalRead(2);

    button2 = digitalRead(4);
    if (button1 == HIGH) нажатие на первую кнопку увеличит яркость
    <
    led = led + 5;

    analogWrite(4, led);
    >
    if (button2 == HIGH) нажатие на вторую кнопку уменьшит яркость
    <
    led = led — 5;

    analogWrite(4, led);
    >

    При удержании первой или второй кнопки плавно изменяется напряжение, подаваемое на управляющий контакт электронного ключа. Тогда и произойдет плавное изменение яркости.

    Модули управления Ардуино

    Для создания полноценного драйвера управления светодиодной лентой можно использовать модули-датчики.

    ИК-управление

    Модуль позволяет запрограммировать до 20 команд.

    Радиус сигнала около 8м.

    Цена комплекта 6 у.е.

    По радиоканалу

    Четырёхканальный блок с радиусом действия до 100м

    Цена комплекта 8 у.е.

    Позволяет включать освещение еще при приближении к квартире.

    Бесконтактное

    Датчик расстояния способен по движению руки увеличивать и уменьшать яркость освещения.

    Светодиодная лента WS2812B. Светомузыкальная установка на Arduino. Подготовка к Новому году.

    • Цена: 18 доларов
    • Перейти в магазин

    Интересно всегда было попробовать светодиодную ленту ws2812b.Вот получил ленту с Banggood. Тем более подходят новогодние праздники. Применить хотелось в разных вариантах.Как украшение или гирлянду для Нового года или как самостоятельную СДУ.
    Китайцы дали такие параметры:
    -Работа напряжение: 5 В постоянного тока
    -мощность: 43.2w
    -Width: 12 мм
    -длина: 1m
    -waterproof: не водонепроницаемый (ip20)
    -Отлично, высокое качество интеллектуальное освещение!
    -основана на высокое качество SMD5050 RGB LED s код вставки (встроенный) интегрированные ИКС управления ws2811. каждый LED независимо представляет собой адресуемые, открывая совершенно новые возможности освещения.
    -ws2812. 5050 СМД ж / ws2811 IC встроенный in144 RGB LED s на метр
    -он ws2811 IC управления ONE LED Чип
    -каждый LED индивидуально адресуемые, с 8 битами зеленого, красного и синего данных сдвинуты в течение 24-битном цвете
    -strip может быть разрезан one от one привело чип.

    Примечание: источник питания или контроллер не включает

    В пакет включено:
    1 * RGB LED полосы

    Что такое ws2812b? Это уже второе поколение полноцветных светодиодов с индивидуальной адресацией, также известное как NeoPixel. В одном корпусе собраны RGB светодиоды и контроллер. Для каждого из цветов доступно 255 уровней яркости. Итого 16 миллионов цветов и всего один провод для управления. Выпускаются в виде отдельных светодиодов, лент, колец, матриц и т.п. Для работы необходим внешний контроллер, на эту роль вполне подходит Ардуино. Каждый из светодиодов (красный, синий, зеленый) при максимальной яркости потребляет 20 миллиампер. Максимальное энергопотребление — 60 миллиампер, когда все три диода горят, получается при белом цвете. Отсюда легко получить максимальное потребление всей ленты, умножив 60 миллиампер на количество светодиодов. Еще немного потребляют контроллеры диодов.
    Приблизительное пиковое потребление для лент длиной 1 метр:
    30 диодов на метр 9.5 ватт ( чуть меньше 2A при 5V)
    60 диодов на метр 19 ватт (3.6А при 5V)
    144 диода на метр 35 ватт (7A при 5V)
    Блоки питания рекомендуется выбирать с небольшим запасом по мощности.
    Подключение
    Сами по себе ленты не светятся, им необходим микроконтроллер. На его роль отлично подходит Arduino.
    подойдет Arduino или Raspberry PI.Собрал схему подключения.

    Для каждого из цветов доступно 255 уровней яркости. Итого 16 миллионов цветов и всего один провод для управления. Выпускаются в виде отдельных светодиодов, лент, колец, матриц и т.п. Для работы необходим внешний контроллер, на эту роль вполне подходит Ардуино. Каждый из светодиодов (красный, синий, зеленый) при максимальной яркости потребляет 20 миллиампер. Максимальное энергопотребление — 60 миллиампер, когда все три диода горят, получается при белом цвете. Отсюда легко получить максимальное потребление всей ленты, умножив 60 миллиампер на количество светодиодов. Еще немного потребляют контроллеры диодов.
    Приблизительное пиковое потребление для лент длиной 1 метр:
    30 диодов на метр 9.5 ватт ( чуть меньше 2A при 5V)
    60 диодов на метр 19 ватт (3.6А при 5V)
    144 диода на метр 35 ватт (7A при 5V)
    Блоки питания рекомендуется выбирать с небольшим запасом по мощности.
    Подключение.
    Сами по себе ленты не светятся, им необходим микроконтроллер. На его роль отлично подходит Arduino(Uno.Nano,Pro mini).

    Как применить эту ленту это уже личное ваше дело-как украшение, гирлянду для Нового года или как самостоятельную СДУ. Я приобрел ленту длиной 1 метр с количеством светодиодов 144 штуки. Ее можно разрезать при необходимости на несколько частей. Подложка бывает белого и черного цвета. На концах установлены разьемы для подключения следующей ленты.То есть можно удлинить гирлянду.

    Я сделал светомузыкальную установку для визуализации музыки в реальном времени. Много различных световых эффектов, синхронизированных с музыкой.

    На один канал подключено 51 сетодиод ленты, и паралельно в данном случае кольцо с светодиодами(чисто для демонстарции)
    Подключить к источнику звука-выходы от громкоговорителя. Сделано на светодиодной ленте ws2812b, Arduino UNO, понижающей Dс-Dс плате или блок питания на 5 вольт3ампера. Осуществлен принцип индикатора уровня сигнала с большим количеством световых эффектов. А где использовать эту схему это уже личное ваше дело и зависит от вашей фантазии.Скетч по ссылке goo.gl/UyVzn8
    Плюсом я думаю считается что управление этой лентой осуществляется по одному проводу, и можно получать разные эффекты на каждом светодиоде.
    Минусом я считаю что пока конечно цена на эти светодиоды завышена. Тем не менее можно получать массу эффектов в цвете и динамике для для последующих разработок даже начинающим. Всем спасибо за потраченное время и хороших Новогодних праздников.
    Подробней в видео youtu.be/ObHzWfSmWFE

    Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий