Как разделяются электроустановки по условиям электробезопасности

ПУЭ 7. Правила устройства электроустановок. Издание 7

Раздел 1. Общие правила

Глава 1.1. Общая часть

Общие указания по устройству электроустановок

1.1.19. Применяемые в электроустановках электрооборудование, электротехнические изделия и материалы должны соответствовать требованиям государственных стандартов или технических условий, утвержденных в установленном порядке. ¶

1.1.20. Конструкция, исполнение, способ установки, класс и характеристики изоляции применяемых машин, аппаратов, приборов и прочего электрооборудования, а также кабелей и проводов должны соответствовать параметрам сети или электроустановки, режимам работы, условиям окружающей среды и требованиям соответствующих глав ПУЭ. ¶

1.1.21. Электроустановки и связанные с ними конструкции должны быть стойкими в отношении воздействия окружающей среды или защищенными от этого воздействия. ¶

1.1.22. Строительная и санитарно-техническая части электроустановок (конструкция здания и его элементов, отопление, вентиляция, водоснабжение и пр.) должны выполняться в соответствии с действующими строительными нормами и правилами (СНиП) при обязательном выполнении дополнительных требований, приведенных в ПУЭ. ¶

1.1.23. Электроустановки должны удовлетворять требованиям действующих нормативных документов об охране окружающей природной среды по допустимым уровням шума, вибрации, напряженностей электрического и магнитного полей, электромагнитной совместимости. ¶

1.1.24. Для защиты от влияния электроустановок должны предусматриваться меры в соответствии с требованиями норм допускаемых индустриальных радиопомех и правил защиты устройств связи, железнодорожной сигнализации и телемеханики от опасного и мешающего влияния линий электропередачи. ¶

1.1.25. В электроустановках должны быть предусмотрены сбор и удаление отходов: химических веществ, масла, мусора, технических вод и т.п. В соответствии с действующими требованиями по охране окружающей среды должна быть исключена возможность попадания указанных отходов в водоемы, систему отвода ливневых вод, овраги, а также на территории, не предназначенные для хранения таких отходов. ¶

1.1.26. Проектирование и выбор схем, компоновок и конструкций электроустановок должны производиться на основе технико-экономических сравнений вариантов с учетом требований обеспечения безопасности обслуживания, применения надежных схем, внедрения новой техники, энерго- и ресурсосберегающих технологий, опыта эксплуатации. ¶

1.1.27. При опасности возникновения электрокоррозии или почвенной коррозии должны предусматриваться соответствующие меры по защите сооружений, оборудования, трубопроводов и других подземных коммуникаций. ¶

1.1.28. В электроустановках должна быть обеспечена возможность легкого распознавания частей, относящихся к отдельным элементам (простота и наглядность схем, надлежащее расположение электрооборудования, надписи, маркировка, расцветка). ¶

1.1.29. Для цветового и цифрового обозначения отдельных изолированных или неизолированных проводников должны быть использованы цвета и цифры в соответствии с ГОСТ Р 50462 «Идентификация проводников по цветам или цифровым обозначениям». ¶

Проводники защитного заземления во всех электроустановках, а также нулевые защитные проводники в электроустановках напряжением до 1 кВ с глухозаземленной нейтралью, в т.ч. шины, должны иметь буквенное обозначение PE и цветовое обозначение чередующимися продольными или поперечными полосами одинаковой ширины (для шин от 15 до 100 мм) желтого и зеленого цветов. ¶

Нулевые рабочие (нейтральные) проводники обозначаются буквой N и голубым цветом. Совмещенные нулевые защитные и нулевые рабочие проводники должны иметь буквенное обозначение PEN и цветовое обозначение: голубой цвет по всей длине и желто-зеленые полосы на концах. ¶

1.1.30. Буквенно-цифровые и цветовые обозначения одноименных шин в каждой электроустановке должны быть одинаковыми. ¶

Шины должны быть обозначены: ¶

1) при переменном трехфазном токе: шины фазы A — желтым, фазы B — зеленым, фазы C — красным цветами; ¶

2) при переменном однофазном токе шина B, присоединенная к концу обмотки источника питания, — красным цветом, шина A, присоединенная к началу обмотки источника питания, — желтым цветом. ¶

Шины однофазного тока, если они являются ответвлением от шин трехфазной системы, обозначаются как соответствующие шины трехфазного тока; ¶

3) при постоянном токе: положительная шина (+) — красным цветом, отрицательная (-) — синим и нулевая рабочая M — голубым цветом. ¶

Цветовое обозначение должно быть выполнено по всей длине шин, если оно предусмотрено также для более интенсивного охлаждения или антикоррозионной защиты. ¶

Допускается выполнять цветовое обозначение не по всей длине шин, только цветовое или только буквенно-цифровое обозначение либо цветовое в сочетании с буквенно-цифровым в местах присоединения шин. Если неизолированные шины недоступны для осмотра в период, когда они находятся под напряжением, то допускается их не обозначать. При этом не должен снижаться уровень безопасности и наглядности при обслуживании электроустановки. ¶

1.1.31. При расположении шин «плашмя» или «на ребро» в распределительных устройствах (кроме комплектных сборных ячеек одностороннего обслуживания (КСО) и комплектных распределительных устройств (КРУ) 6-10 кВ, а также панелей 0,4-0,69 кВ заводского изготовления) необходимо соблюдать следующие условия: ¶

1. В распределительных устройствах напряжением 6-220 кВ при переменном трехфазном токе сборные и обходные шины, а также все виды секционных шин должны располагаться: ¶

а) при горизонтальном расположении: ¶

  • одна под другой: сверху вниз A – B – C;
  • одна за другой, наклонно или треугольником: наиболее удаленная шина A, средняя — B, ближайшая к коридору обслуживания — C;

б) при вертикальном расположении (в одной плоскости или треугольником): ¶

  • слева направо A – B – C или наиболее удаленная шина A, средняя — B, ближайшая к коридору обслуживания — C;

в) ответвления от сборных шин, если смотреть на шины из коридора обслуживания (при наличии трех коридоров – из центрального): ¶

  • при горизонтальном расположении: слева направо A – B – C;
  • при вертикальном расположении (в одной плоскости или треугольником): сверху вниз A – B – C.

2. В пяти- и четырехпроводных цепях трехфазного переменного тока в электроустановках напряжением до 1 кВ расположение шин должно быть следующим: ¶

  • при горизонтальном расположении:
  • одна под другой: сверху вниз A – B – C – N – PE (PEN);
  • одна за другой: наиболее удаленная шина A, затем фазы B – C – N, ближайшая к коридору обслуживания — PE (PEN);
  • при вертикальном расположении: слева направо A – B – C – N – PE (PEN) или наиболее удаленная шина A, затем фазы B – C – N, ближайшая к коридору обслуживания — PE (PEN);
  • ответвления от сборных шин, если смотреть на шины из коридора обслуживания:
  • при горизонтальном расположении: слева направо A – B – C – N – PE (PEN);
  • при вертикальном расположении: A – B – C – N – PE (PEN) сверху вниз.

3. При постоянном токе шины должны располагаться: ¶

  • сборные шины при вертикальном расположении: верхняя М, средняя (-), нижняя (+);
  • сборные шины при горизонтальном расположении:
  • наиболее удаленная М, средняя (-) и ближайшая (+), если смотреть на шины из коридора обслуживания;
  • ответвления от сборных шин: левая шина М, средняя (-), правая (+), если смотреть на шины из коридора обслуживания.

В отдельных случаях допускаются отступления от требований, приведенных в пп.1-3, если их выполнение связано с существенным усложнением электроустановок (например, вызывает необходимость установки специальных опор вблизи подстанции для транспозиции проводов воздушных линий электропередачи — ВЛ) или если на подстанции применяются две или более ступени трансформации. ¶

1.1.32. Электроустановки по условиям электробезопасности разделяются на электроустановки напряжением до 1 кВ и электроустановки напряжением выше 1 кВ (по действующему значению напряжения). ¶

Безопасность обслуживающего персонала и посторонних лиц должна обеспечиваться выполнением мер защиты, предусмотренных в гл.1.7, а также следующих мероприятий: ¶

  • соблюдение соответствующих расстояний до токоведущих частей или путем закрытия, ограждения токоведущих частей;
  • применение блокировки аппаратов и ограждающих устройств для предотвращения ошибочных операций и доступа к токоведущим частям;
  • применение предупреждающей сигнализации, надписей и плакатов;
  • применение устройств для снижения напряженности электрических и магнитных полей до допустимых значений;
  • использование средств защиты и приспособлений, в том числе для защиты от воздействия электрического и магнитного полей в электроустановках, в которых их напряженность превышает допустимые нормы.

1.1.33. В электропомещениях с установками напряжением до 1 кВ допускается применение неизолированных и изолированных токоведущих частей без защиты от прикосновения, если по местным условиям такая защита не является необходимой для каких-либо иных целей (например, для защиты от механических воздействий). При этом доступные прикосновению части должны располагаться так, чтобы нормальное обслуживание не было сопряжено с опасностью прикосновения к ним. ¶

1.1.34. В жилых, общественных и других помещениях устройства для ограждения и закрытия токоведущих частей должны быть сплошные; в помещениях, доступных только для квалифицированного персонала, эти устройства могут быть сплошные, сетчатые или дырчатые. ¶

Ограждающие и закрывающие устройства должны быть выполнены так, чтобы снимать или открывать их можно было только при помощи ключей или инструментов. ¶

1.1.35. Все ограждающие и закрывающие устройства должны обладать требуемой (в зависимости от местных условий) механической прочностью. При напряжении выше 1 кВ толщина металлических ограждающих и закрывающих устройств должна быть не менее 1 мм. ¶

1.1.36. Для защиты обслуживающего персонала от поражения электрическим током, от действия электрической дуги и т.п. все электроустановки должны быть снабжены средствами защиты, а также средствами оказания первой помощи в соответствии с действующими правилами применения и испытания средств защиты, используемых в электроустановках. ¶

1.1.37. Пожаро- и взрывобезопасность электроустановок должны обеспечиваться выполнением требований, приведенных в соответствующих главах настоящих Правил. ¶

При сдаче в эксплуатацию электроустановки должны быть снабжены противопожарными средствами и инвентарем в соответствии с действующими положениями. ¶

1.1.38. Вновь сооруженные и реконструированные электроустановки и установленное в них электрооборудование должно быть подвергнуто приемо-сдаточным испытаниям. ¶

1.1.39. Вновь сооруженные и реконструированные электроустановки вводятся в промышленную эксплуатацию только после их приемки согласно действующим положениям.¶

Кто должен проходить обучение по электробезопасности?

Электробезопасность на предприятии — это комплекс мероприятий, направленный на обеспечение защиты сотрудников от поражения электротоком и другого вредного и опасного воздействия электричества.

Если вы — работник офиса, то не сомневайтесь, что и в вашей компании должен быть ответственный за электробезопасность, а сотрудники должны проходить соответствующее обучение. Действие правил распространяется не только на производственные или строительные организации.

Говоря о правилах, мы имеем в виду ПТЭЭП — Правила технической эксплуатации электроустановок потребителей и Правила по охране труда при эксплуатации электроустановок или ПОТЭЭ. Это документы, на которые необходимо ориентироваться в вопросе электробезопасности.

Группы по электробезопасности

Исходя из категории персонала и оборудования, с которым ему приходится работать, установлено несколько квалификационных групп:

  • I группа — не электротехнический персонал, это, например, операторы ПК. К этой группе относятся те, кто вроде бы не выполняет каких-то сложных и опасных работ, но взаимодействует с оборудованием и теоретически может получить поражение электротоком.

Кто конкретно относится к этой группе, решает руководитель. Такой персонал ежегодно проходит инструктаж . Инструктором может выступать только лицо с группой 3 или выше. Предварительно необходимо разработать программу инструктажа, в которую входит в т.ч. обучение безопасным способам работы и оказанию первой помощи при поражении электрическим током.

  • II группа также присваивается неэлектротехническому персоналу, но уже обслуживающему установки и оборудование с электроприводом. Чтобы получить вторую группу необходимо иметь расширенные знания, а работники с основным общим или со средним полным образованием должны пройти обучение в образовательных организациях в объеме не менее 72 часов .
  • III группа присваивается электротехническому персоналу. Она дает право самостоятельно (единолично) проводить обслуживание, осмотр, подключение и отключение электроустановок до 1000 В.

Как уже выше говорилось, обладатели третьей группы могут инструктировать тех, кому присваивается первая. Они вправе вести надзор за работами в установках, т.е. выступать в качестве административно-технического персонала (могут даже сами не выполнять работы, а только наблюдать за их выполнением).

  • IV группа — электротехнический персонал, который обслуживает электроустановки напряжением выше 1000 В. Требует еще более усиленной подготовки, т.к. это работа связана с высокой ответственностью и силовым оборудованием, таким, например, как трансформаторные подстанции.
  • V группа — ответственные за электрохозяйство и другой инженерно-технический персонал в установках напряжением выше 1000 В (конечно они могут отвечать и за установки меньшего напряжения).

Чем выше группа, тем больший объем знаний должен освоить сотрудник, которому она присваивается. Особо стоит выделить ответственного за электрохозяйство.

Кто это — ответственный за электрохозяйство?

Согласно ПТЭЭП, руководитель организации назначает ответственного за электрохозяйство и (при необходимости) его заместителя из числа собственных специалистов. Им не может быть стороннее лицо, с которым заключен ГПХ договор или специализированная организация . Только штатный специалист.

Есть только одно исключение, когда не обязательно назначать отдельное ответственное лицо, а полную ответственность на себя берет руководитель — если компания не занимается производством, а оборудование имеет номинальное напряжение не выше 380 В.

Хотя и тут не все так просто. Не достаточно издать приказ по предприятию. Необходимо подать заявление-обязательство в местное отделение Ростехнадзора и получить согласование. Кроме того, необходимо быть уверенным, что деятельность организации на 100% не относится к производственной.

Чтобы разобраться, что такое производственная деятельность придется обратиться к Трудовому кодексу (статья 209) и ОКВЭД. К примеру, не являются производством :

  • туристские и экскурсионные услуги;
  • услуги физической культуры;
  • услуги правового характера (юридические, бухгалтерские, консультационные и т.п.)
  • торговля.

Кроме заявления понадобятся дополнительные документы (копии), подтверждающие полномочия заявителя (руководителя организации), на помещение, где ведется деятельность, однолинейную электрическую схему, акт разграничения балансовой принадлежности и эксплуатационной ответственности, технические условия, протоколы испытаний электроустановок.

Они подтвердят, что действительно имеющееся оборудование соответствует параметрам, позволяющим не назначать отдельное лицо, ответственное за электробезопасность.

Как видите, даже если у вас обычный офис, это не означает, что не потребуется никаких действий для обеспечения электробезопасности. А если используемое помещение взято в аренду, то и это не освобождает руководителя от проведения необходимых мероприятий.

Обучение электробезопасности

Обучение по электробезопасности проходят как те, кто уже работает по специальности (т.е. периодически подтверждают уровень знаний) или собирается сменить место работы и хочет сохранить квалификацию.

После прохождения обучения выдается удостоверение , имеющее ограниченный срок действия. Периодичность прохождения в дальнейшем проверки знаний зависит от категории конкретного работника:

  1. Электротехнический персонал , непосредственно организующий и проводящий работы по обслуживанию, наладке, ремонту действующих электроустановок, выполняющий электромонтажные работы, а также сотрудники, обладающие полномочиями по выдаче нарядов и распоряжений проходят обучение и проверку знаний 1 раз в год;
  2. Административно-технический персонал , не относящийся к предыдущей группе, специалисты по охране труда и инспектированию электроустановок — 1 раз в 3 года.

Существует и внеочередная проверка знаний , она проводится, например, при установке нового оборудования, переводе на должность, требующую более высокой группы по электробезопасности, по требованию органов государственного надзора, при перерыве в работе в данной должности более 6 месяцев и т.д.

Можно попробовать провести обучение прямо в компании, но для этого необходимо, чтобы в штате были квалифицированные специалисты, прошедшие аттестацию в Ростехнадзоре. Кроме того, придется организовать сам процесс обучения и проверки знаний, разработать программы обучения и экзаменовки, собрать комиссию, которая будет принимать экзамены и т.д., отвлекая на это немалые ресурсы, в том числе и денежные.

Есть ли смысл затрачивать столько времени и сил или достаточно обратиться в специализированную компанию и пройти, например, дистанционное обучение?

Решение проблем дистанционного обучения

Закон не запрещает проводить курсы обучения рабочим специальностям дистанционно, а также проверять таким образом полученные ранее знания.

В п.п. 1.4.40. ПТЭЭП сказано, что допускается использование компьютерных технологий для всех видов проверки , кроме первичной, а программа должна обеспечивать режим обучения. И ничего не сказано на базе самой организации должен проходить процесс или нет. Поэтому пройти обучение можно без отрыва от производства в удобное время и даже дистанционно.

По сути обучение на расстоянии не отличается от очного, в чем-то даже превосходит его. Посудите сами:

  • Обмен информацией может происходить в любой форме — голосовой (через аудиосвязь), текстовой (отправка документов, нормативов, выполнение тестов и т.д.), визуальной (видеоконференции, формат видео-уроков, общение напрямую с преподавателем в группе или индивидуально);
  • Обмен учебными материалами, заданиями, выполнение тестовых упражнений и экзамен могут проводится намного быстрее . Например, преподавателю не нужно раздавать всем материалы на бумаге — достаточно в пару кликов мышкой отправить их на электронную почту обучающимся.
  • Работник и работодатель не несут дополнительных затрат на проезд, оплату командировочных, если необходимо отправить сотрудника для обучения в другой город.

Единственным минусом можно назвать необходимость наличия сети интернет и устойчивой связи, но это работодатель в состоянии обеспечить, ведь такое соединение явно обойдется намного дешевле, чем проведение обучения на базе организации.

В целом, оценивая дистанционное обучение, его проблемы и перспективы, можно сказать, что это прогрессивный способ получения и подтверждения знаний.

В Attek мы используемые учебные программы, разработанные в соответствии с рекомендациями Ростехнадзора , полностью отвечающие современным условиям работы с электроустановками.

Мы проводим обучение в различных форматах:

  • классическое очное — в офисе нашего центра обучения;
  • с выездом преподавателя на территорию заказчика;
  • дистанционно.

Продолжительность образовательного процесса занимает от 1 до 5 дней . По завершении подготовки по электробезопасности слушателям курсов выдается журнал проверки знаний и удостоверение нового образца. Этих документов достаточно для допуска к работам и прохождения любых видов проверок.

Если у вас остались вопросы или вы хотите подать заявку на обучение, оставьте в форме ниже свои контактные данные:

Как делятся электроустановки по условиям электробезопасности

Электроустановками (ЭУ) являются группы агрегатов, механизмов, оборудования вместе с помещениями, где они расположены, если эти системы предназначены для производства, передачи, преобразования электрической энергии. В статье будет рассмотрен вопрос, как делятся электроустановки по условиям электробезопасности.

Правила устройства электроустановок

Все требования к электрооборудованию излагаются в разработанном Министерством энергетики РФ нормативном документе — Правилах устройства электроустановок (ПУЭ). Документ регулярно перерабатывается, его последняя редакция (седьмое издание) введена в действие с 1 января 2003 г.

Важно! Периодически обновляются отдельные главы, значительная часть шестого издания актуальна и сейчас.

  • для организаций любых видов;
  • для физических лиц — предпринимателей.

Его положения применимы к установкам, которые находятся на стадии возведения или реконструкции, для действующих они только рекомендованы.

Обратите внимание! Возведенные до 2003 г. устройства должны соответствовать более ранним редакциям Правил, то есть актуальным на момент пуска в эксплуатацию, при реконструкции (например, меняется схема управления оборудованием на более современную) — последним принятым. При проведении капитальных ремонтов (замена базовых частей агрегатов) также нужно учитывать новые ПУЭ.

Документ определяет понятия электроустановки, электроприемника и потребителя электроэнергии. К примеру, токарный станок, электродвигатель или компьютер — это электроприемники. Трансформаторная подстанция, система уличного освещения — электроустановки. Потребителем же является один электроприемник или совокупность их, объединенных между собой.

Система уличного освещения

Электроустановки подразделяются на открытые и закрытые. Здания, в которых они расположены, классифицируются по степени наличия опасных факторов:

  • влажности;
  • высокой температуры воздуха;
  • пыли;
  • агрессивных газов, жидкостей.

Классификация по электробезопасности

Правила в пункте 1.1.32 фиксируют, как разделяются все электроустановки по условиям электробезопасности:

  • ЭУ с напряжением до 1000 В (1кВ);
  • ЭУ с напряжением более 1000 В (1кВ).

Критерий для разделения установок — значение величины напряжения. Примеры устройств с напряжением выше 1000 В:

  • высоковольтные линии электропередач;
  • трансформаторные подстанции;
  • мощные электродвигатели.

Большая часть потребителей использует оборудование, рассчитанное на напряжение менее 1000 В. Промышленные предприятия для электроснабжения агрегатов (станков, насосов, сложных механизмов) обычно потребляют энергию с величиной напряжения 380 В. В системах бытового назначения, как правило, применяется 220 В.

К сведению! Зачастую к объекту подводится кабель с напряжением более 1 кВ, далее в трансформаторной подстанции происходит понижение до необходимой величины. При этом она может быть отдельным строением либо находиться внутри помещения, где расположены приемники электроэнергии.

Например, в котельной используется оборудование, запитанное от сети 380 В. В этом же здании находится подстанция с трансформаторами, понижающими напряжение с 6 кВ до 0,4 к В. Требования к ее обслуживанию выше, так как она относится уже к классу более 1 кВ.

Обеспечение безопасности

В главе 1.7 ПУЭ приводится классификация электроустановок в отношении мер электробезопасности. Описаны различные способы организации защитного заземления.

Должный уровень безопасности обеспечивается следующими мероприятиями:

  • соблюдение нормативных расстояний до опасных участков. Нужно закрывать, ограждать части агрегатов, которые могут быть под напряжением, чтобы нельзя было приблизиться к ним на опасное расстояние;
  • применение блокировки, не позволяющей физически ошибочно включить аппарат или снять ограждение;
  • использование предупреждающей сигнализации, надписи и плакатов. Например, при несанкционированном открытии дверок шкафа управления включается сирена или мигающая лампа. Виды предупреждающих знаков — «СТОЙ! Напряжение», «Не влезай! Убьет»;
  • должны применяться устройства, уменьшающие напряженность электромагнитных полей при превышении нормативных величин. Например, установка защитных экранов;
  • обязательное использование средств защиты.

Во всех местах, где возможно присутствие посторонних лиц, нужно делать сплошные устройства, защищающие части под напряжением. Если доступ к этим частям имеют только профессионалы, то допустимы дырчатые и сетчатые ограждения.

Защитные приспособления должны быть такими, чтобы их было невозможно снять без специальных инструментов и ключей. Толщина при высоком, более 1000 В напряжении не менее 1 мм (если они металлические).

Важно! Нужно принять все меры, чтобы посторонний не мог проникнуть на опасный участок. Если человек пострадает от действия тока, то владелец электроустановки будет привлечен к ответственности, вплоть до уголовной.

Открытое распределительное устройство (ОРУ)

Например, по территории открытого распределительного устройства, где расположено высоковольтное оборудование, персонал передвигается строго по размеченным дорожкам. Человек, самовольно туда проникший, может попасть под наведенное напряжение с последствиями вплоть до летального исхода.

Существуют другие защитные меры:

  • использование осветительных приборов и ручного инструмента с низким напряжением;
  • разделение электросетей на независимые участки;
  • устройство защитных заземлений для корпусов приборов и установок;
  • применение устройств защитного отключения (УЗО).

Персонал для защиты от действия электротока должен использовать электрозащитные средства, которые делятся на:

  • основные, которые обеспечивают защиту от напряжения;
  • дополнительные, помогают основным.

Все лица, использующие электроэнергию, ее производители и потребители применяют установки низкого и высокого напряжения. Для каждой категории этих устройств нужно строго соблюдать меры безопасности.

Как делятся электроустановки по условиям электробезопасности

Электроснабжение подразумевает включение в собственную систему различных технологических процессов посредством подключения разного рода токоприемников и электрического оборудования. Прежде чем дать ответ на вопрос, как делятся электроустановки по условиям электробезопасности, необходимо разобраться с тем, что представляет собой электрооборудование как таковое.

Правила устройства электроустановок (ПУЭ) формулируют описываемый термин очень четко.

Под электроустановкой подразумевается оборудование, в состав которого входят:

  • машины;
  • аппараты;
  • воздушные линии электропередачи;
  • кабельные линии электропередачи.

Иными словами, любая электроустановка включает в себя разноплановое оборудование, которое может эффективно применяться для преобразования, накопления, передачи, распределения электрической энергии или для преобразования ее в иной тип энергии (речь может идти о преобразовании тепловой энергии в кинетическую).

Типы электроустановок по условиям электробезопасности

По параметру электробезопасности все установки делятся на 4 основных типа:

  1. Электрические установки с параметром напряжения выше 1 кВ в сетях с большими токами замыкания на землю (т.е. с эффективно заземленной нейтралью);

Устройства для заземления подобного плана установок выполняются с обязательным следованием четким требованиям к показателям сопротивления, напряжения, конструктивным особенностям, а также ограничению напряжения непосредственно на самом заземляющем механизме. При стекании с заземляющего устройства тока на землю напряжение не должно превышать показатель 10 кВ.

Напряжение, превышающее 10 кВ, допустимо исключительно на тех заземлителях, с которых стопроцентно исключен вынос потенциалов за пределы ограждения электроустановки. Если напряжение на устройствах для заземления варьируется в диапазоне от 5 до 10 кВ, конструктивно обязательно должна предусматриваться дополнительная защита изоляции отходящих кабелей, а также телемеханики.

Сопротивление внутри заземляющего устройства ни при каких обстоятельствах не должно превышать показателя 0,5 Ом.

Заземлители продольного типа нужно прокладывать на глубине 0,5-0,7 метров, в удаленности примерно в метр от оснований зданий и оборудования вдоль осей установок.

Что касается поперечных заземлителей, их нужно класть в любых подходящих местах между оборудованием. Глубина закладки может варьироваться от 0,5 до 0,7 метров.

Горизонтальные заземлители специалисты рекомендуют прокладывать по самому краю территории, которую они занимают. Причем таким образом, чтобы по окончании работ получался полностью замкнутый контур.

Нельзя никаким способом присоединять к заземляющему устройству внешнее ограждение электроустройства. Если же от оборудования отходят высоковольтные линии электропередач 100кВ и выше (грозотросы), ограждение стоит заземлять посредством заземлителей вертикального вида длиной не меньше 2 метров. Устанавливать их необходимо у стоек ограды (по периметру) с интервалом от 20 до 50 м. Монтаж подобной системы заземления не потребуется в том случае, если ограждение электрооборудования оснащено стойками из металла либо железобетона. Арматура последних в обязательном порядке должна соединяться с металлическими участками ограды.

Для того чтобы полностью исключить возникновение электросвязи внешнего ограждения с заземлителем, расстояние от одного до другого должно составлять больше 2 метров. При этом все те элементы (горизонтальные заземлители, кабели, провода, трубы и пр.), которые проложены между стойками ограждения, должны находиться достаточно глубоко – более полуметра. На тех участках, где внешняя ограда примыкает к зданиям, необходимо предусматривать специальные деревянные либо кирпичные прокладки длиной больше 1 метра.

Если заземлитель электрического оборудования имеет соединение с заземлителем электроустановки выше 1 кВ с заземленной нейтралью кабелем в металлической оболочке, чтобы выровнять потенциалы, потребуется неукоснительное соблюдение одного из приведенных ниже условий:

  • Обязательная кладка на глубину не меньше одного метра и на расстоянии не менее одного метра от фундамента строения (периметра территории, которую занимает оборудование) заземляющего устройства, которое было бы соединено с металлоконструкциями и сетью заземления, а на входах и въездах – укладка проводников на глубину 1.5 м на расстоянии 2 м от заземлителя. Данные заземлители должны быть соединены проводником;
  • Применение фундаментов из железобетона в качестве альтернативы заземляющих устройств. Важно учесть должное обеспечение соответствующего уровня выравнивания потенциалов.

Выполнения приведенных выше условий не потребуется в том случае, если вокруг здания или сооружения присутствуют отмостки из асфальта. Если же у какого-то из выходов или выездов они все же отсутствуют, потребуется выполнить выравнивание потенциалов путем уже описанной процедуры укладки двух проводников.

  1. Электрические установки выше 1 кВ в сетях с изолированной нейтралью (малыми токами замыкания на землю);

Ответ на вопрос электробезопасности подобных установок кроется в первую очередь в том, что сопротивление заземлителя, независимо от погодных и внешних факторов, при прохождении расчетного тока замыкания на землю не должно быть выше 10 Ом. Под расчетным током при этом понимается полный ток замыкания на землю.

Изолированная нейтраль дает возможность применять электрооборудование в условиях, которые обязывают к использованию повышенного требования к параметру электробезопасности, с жестким контролем за состоянием и целостностью изоляционного слоя, а также всех предохранительных элементов.

К сетям с напряжением выше 1 кВ с изолированной нейтралью относятся сети, напряжение в которых варьируется от 3 до 33 кВ. Если искать ответ на вопрос безопасности, в данном случае пренебрегать емкостной проводимостью не следует ни при каких обстоятельствах.

В стандартном режиме токи в каждой из фаз источника рассчитываются путем геометрической суммы нагрузок и емкостных токов фаз по отношению к земле. При этом следует помнить о том, что геометрической суммой емкостных токов всех трех фаз является ноль, потому ток и не проходит в земле.

Использование трехфазной сети напряжением от 3 до 35 кВ с изолированной нейтралью связано не столько с требованиями электрической безопасности (мало того, они всегда представляют собой серьезную опасность для жизни и здоровья человека), а скорее – с обеспечением нормальной работы электрооборудования, включенного на междуфазное напряжение. Дело в том, что в случае однофазного замыкания на землю в таких сетях, оснащенных изолированной нейтралью, междуфазные напряжения остаются по величине прежними и сдвинутыми на угол 120 градусов по фазе.

Повышение напряжения до линейного значения стандартно распространяется на всю сеть. Это означает, что при длительности сохранения подобной ситуации неизбежно последует повреждение изоляционного материала. Последнее повлечет за собой междуфазное короткое замыкание.

Универсальный ответ на вопрос, как избежать подобных замыканий, наверное, не существует. Но определенные меры в направлении быстрого поиска замыканий на землю должны быть продуманы заранее. Для этого должен выполняться автоматический контроль изоляции сети, который бы действовал на сигнал в случаях снижения показателя сопротивления изоляции любой из фаз ниже показателя заданного значения.

В сетях, которые ответственны за обеспечение питания подстанций угольных шахт, торфяных разработок, передвижных установок и прочего аналогичного оборудования, система защиты от замыканий должна работать на отключение.

  1. Электрические установки напряжением до 1 кВ с глухим заземлением нейтрали;

Ответ на вопрос, каковым должно быть сопротивление заземляющих устройств в установках, напряжение в которых не превышает 1 кВт, вполне конкретен: не более 4 Ом. Но традиционно существуют и некоторые исключения. Речь идет об электрооборудовании, в котором общая мощность установленных на нем трансформаторов и генераторов не превышает показателя 100 кВА. В таких случаях сопротивление может достигать 10 Ом.

Те части электрических установок, которые требуют заземления, в обязательном порядке должны иметь соединение посредством металлических проводников с нейтралью источника питания. Возможно также использование нулевого провода.

Если речь идет о воздушных линиях, металлическая связь с нейтралью также может обеспечиваться посредством нулевого провода. Он прокладывается на опорах по аналогии с фазными кабелями. На каждые 250 метров, а также на конечных точках и ответвлениях линии должны присутствовать повторные заземления нулевого провода. Сопротивление заземлителей в повторных точках заземления должно составлять не более 10 Ом.

Глухозаземленная нейтраль представляет собой надежную защиту человека от поражения электрическим током. В случае возникновения аварий потенциалы выравниваются, и прикосновение к корпусу электрооборудования остается совершенно безопасным – срабатывает устройство защитного отключения.

  1. Электрические установки напряжением до 1кВ с изолированной нейтралью.

В электрическом оборудовании напряжением до 1 кВ сопротивление не должно быть выше 4 Ом. Если речь об установках, в которых суммарная мощность всех функционирующих генераторов и трансформаторов составляет 100 кВА, – не выше 10 Ом, как и в случае с глухим заземлением.

Изолированной называется нейтраль, которая не имеет присоединения к устройству заземления. Либо она может быть присоединена посредством специального оборудования, компенсирующего емкостной ток в сети, или аппаратов, обладающих большим показателем сопротивления. Заземление нейтрали трансформатора или генератора называют рабочим заземлением (не следует путать с защитным заземлением).

Сопротивление в устройстве для заземления, к которому присоединены нейтрали трансформаторов и генераторов, должно составлять для электрооборудования с напряжением 220/380В не более 4 Ом.

В оборудовании с изолированной нейтралью на нулевых выводах трансформаторов обычно устанавливают пробивные предохранители. Они надежно сдерживают вероятность поражения током, которая неизбежно возникает в случае повреждения изоляционного слоя между обмотками низшего и высшего напряжений.

Пробивной предохранитель – это своеобразный патрон, выполненный из фарфора, оснащенный двумя медными пластинками с прокладкой из слюды с небольшими дырками. Одну пластину присоединяют к нулевому выводу трансформатора, а другую – непосредственно к магистральной шине заземления. В ситуациях повреждения изоляции между обмотками напряжений трансформатора осуществляется переход потенциала с обмотки высшего напряжения на обмотку низшего. При повышении напряжения на нулевом выводе выше показателя 500 В происходит пробивание воздушного промежутка в прокладке пробивного предохранителя, и опасный потенциал уходит в землю.

Рассмотрев все четыре типа электроустановок по условиям электробезопасности и их специфику, принцип безопасной работы с подобным оборудованием становится более понятным.

Видео

Общие положения по электробезопасности

Что понимается под электробезопасностью?

Под электробезопасностью понимается система организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного воздействия электрического тока, электрической дуги, электромагнитного поля и статического электричества.

Что такое электротравма и электротравматизм?

Электротравмой называется травма, вызванная воздействием электрического тока или электрической дуги. Явление, характеризующееся совокупностью электротравм, называется электротравматизмом.

Что понимается под очагом электротравм или очагом электротравматизма?

Под очагом электротравм или очагом электротравматизма понимается та или иная временная или постоянная ситуация при эксплуатации электроустановок, когда имеют место аналогичные, похожие случаи электропоражений.

Каково основное отличие электротравматизма от других видов производственных и бытовых травм?

Число травм, вызванных электрическим током, сравнительно невелико и составляет до 3% общего количества несчастных случаев.

Иная картина раскрывается при рассмотрении только смертельных несчастных случаев. Если в среднем по народному хозяйству около 13% смертельных несчастных случаев падает на поражение электрическим током, то в отдельных отраслях наблюдается увеличение до 30-40%.

Значительная часть пострадавших переходит на инвалидность. Есть данные и об отдаленных последствиях электротравматизма, выражающиеся в изменении нервнопсихической сферы, предрасположенности к отдельным видам заболевания и т. д.

В чем заключается основная опасность поражения электрическим током?

Для обнаружения на расстоянии электрического тока у человека нет специальных органов чувств. Невозможно без специальных приборов почувствовать, находится ли данная часть установки под напряжением до тех пор, пока электрическая энергия не превратится в энергию другого вида (например, в световую — искрение) или пока человек сам не попадет под напряжение.

Электрический ток не имеет запаха, цвета и действует бесшумно. Неспособность организма человека обнаруживать его до начала действия приводит к тому, что работающие часто не осознают реально имеющейся опасности и не принимают своевременно необходимых защитных мер. Опасность поражения электрическим током усугубляется еще и тем, что пострадавший не может оказать себе помощь. При неумелом оказании помощи может пострадать и тот, кто пытается помочь.

Каковы причины электротравматизма?

В соответствии с «Методическими указаниями по расследованию производственного электротравматизма» причины электротравм подразделяются на технические, организационно-технические, организационные и организационно-социальные.

К техническим причинам относятся: несоответствие электроустановок, средств защиты и приспособлений требованиям безопасности и условиям применения, связанное с дефектами конструкторской документации, изготовления, монтажа и ремонта; неисправности установок, средств защиты и приспособлений, возникшие в процессе эксплуатации.

К организационно-техническим причинам следует относить несоблюдение технических мероприятий безопасности, которые должны осуществлять потребители на стадии эксплуатации (обслуживания). К организационно-техническим причинам относятся, кроме того, несвоевременная замена исправного или устаревшего оборудования и использование установок, не принятых в эксплуатацию в предусмотренном порядке (в том числе самодельных).

К организационным причинам электротравм следует относить невыполнение или неправильное выполнение организационных мероприятий безопасности. Организационной причиной электротравм является также несоответствие работы заданию.

К организационно-социальным причинам электротравм относятся:

  • работа в сверхурочное время (в том числе работа по ликвидации последствий аварий);
  • несоответствие работы специальности; нарушение трудовой дисциплины;
  • допуск к работе в электроустановках лиц моложе 18 лет;
  • привлечение к работе лиц, не оформленных приказом о приеме на работу в организацию;
  • допуск к работе лиц, имеющих медицинские противопоказания.

Какие факторы повышают вероятность возникновения электротравм на промышленных предприятиях?

Вероятность электротравм на производстве в большей степени обусловлена следующими факторами:

  • протяженностью и разветвленностью электрических сетей;
  • необходимостью постоянного контакта с нетоковедущими частями электроустановок и их связью с технологическим оборудованием;
  • большим количеством орудий и предметов труда, проводящих электрический ток;
  • подвижными механизмами, связанными с электроустановками, протяженными металлическими конструкциями, на которых возможно появление напряжения;
  • значительным количеством ручного электроинструмента и переносных пультов управления;
  • большим объемом электросварочных работ; наличием на предприятиях людей без специальной подготовки, но тем или иным образом связанных с эксплуатацией электроустановок;
  • проведением работ на открытых площадках с использованием электроэнергии;
  • выполнением работе использованием электроустановок в замкнутых токопроводящих резервуарах;
  • повышенной температурой и влажностью, отрицательно влияющими на изоляцию электроустановок в некоторых производственных помещениях.

Что положено в основу обеспечения электробезопасности?

Электробезопасность должна обеспечиваться:

  • выполнением требований (правил и норм) к конструкции и устройству электроустановок, установленных в стандартах Системы стандартов безопасности труда, а также в стандартах и технических условиях на электротехнические изделия;
  • техническими способами и средствами защиты;
  • организационными и техническими мероприятиями.

Как разделяются электроустановки по условиям электробезопасности?

В соответствии с правилами устройства электроустановок (Г1УЭ) электроустановки по условиям электробезопасности разделяются:

  • на электроустановки напряжением выше 1000 В в сетях с эффективно заземленной нейтралью (с большими токами замыкания на землю);
  • на электроустановки напряжением выше 1000 В в сетях с изолированной нейтралью (с малыми токами замыкания на землю);
  • на электроустановки напряжением до 1000 В с заземленной нейтралью;
  • на электроустановки напряжением до 1000 В с изолированной нейтралью.

Какие факторы должны учитываться при выборе технических способов и средств защиты?

Технические способы и средства защиты, обеспечивающие электробезопасность, должны устанавливаться с учетом:

  • номинального напряжения, рода и частоты тока электроустановки;
  • способа электроснабжения (от стационарной сети, ©т автономного источника питания электроэнергией);
  • режима нейтрали (средней точки) источника питания электроэнергией (изолированная, заземленная нейтраль) ;
  • вида исполнения (стационарные, передвижные, переносные);
  • характеристики помещений по степени опасности поражения электрическим током;
  • возможности снятия напряжения с токоведущих частей, на которых или вблизи которых должна производиться работа;
  • характера возможного прикосновения человека к элементам цепи тока (однофазное прикосновение, двухфазное прикосновение, прикосновение к металлическим нетоковедущим частям, оказавшимся под напряжением);
  • возможности приближения к токоведущим частям, находящимся под напряжением, па расстояние меньше допустимого или попадания в зону растекания тока;
  • видов работ (монтаж, наладка, испытание, эксплуатация электроустановок).

Какие технические способы и средства защиты должны применяться для обеспечения электробезопасности?

Для обеспечения электробезопасности должны применяться отдельно или в сочетании друг с другом следующие технические способы и средства:

  • защитное заземление;
  • зануление;
  • выравнивание потенциалов;
  • малое напряжение;
  • электрическое разделение сетей;
  • защитное отключение;
  • изоляция токоведущих частей (рабочая, дополнительная, усиленная, двойная);
  • компенсация токов замыкания на землю; оградительные устройства;
  • предупредительная сигнализация, блокировка, знаки безопасности;
  • средства защиты и предохранительные приспособления.

Как разделяются производственные помещения по условиям среды?

По условиям среды производственные помещения разделяются на сухие, влажные, сырые, особо сырые, жаркие, пыльные (с токопроводящей и нетокопроводящей пылью), помещения с химически активной или органической средой.

Сухими называются помещения, в которых относительная влажность воздуха не превышает 60%.

К влажным относятся помещения, в которых пары или конденсируемая влага выделяются лишь временно и притом в небольших количествах, относительная влажность воздуха — более 60%, но не превышает 75%.

Сырыми являются помещения, в которых относительная влажность воздуха длительно превышает 75%.

Особо сырые помещения, в которых относительная влажность воздуха близка к 100% (потолок, степы, пол и предметы, находящиеся в помещении, покрыты влагой). Жаркими считаются помещения, в которых температура превышает постоянно или периодически (более 1 сут) 35°С (например, помещения с сушилками, сушильными и обжигательными печами, котельные и т. непыльными называются помещения, в которых по условиям производства выделяется технологическая пыль в таком количестве, что она может оседать на проводах, проникать внутрь машин, аппаратов и т. п. и, отлагаясь на электроустановках, ухудшает условия охлаждения и изоляции. Пыльные помещения могут быть как с токопроводящей, так и с нетокопроводящей пылью.

Помещения с химически активной средой — это такие, в которых постоянно или в течение длительного времени содержатся агрессивные пары, газы, жидкости, образующие отложения или плесень, разрушающие изоляцию и токоведущие части электрооборудования.

Какие электроустановки считаются действующими?

Действующими считаются электроустановки, которые содержат в себе источники электроэнергии (химические, гальванические и полупроводниковые элементы), находятся под напряжением полностью или частично или на которые в любой момент может быть подано напряжение включением коммутационной аппаратуры.

Как классифицируются помещения по степени опасности поражения электрическим током?

В отношении опасности поражения людей электрическим током различаются:

  1. Помещения без повышенной опасности, в которых отсутствуют условия, создающие повышенную или особую опасность.
  2. Помещения с повышенной опасностью, характеризующиеся наличием в них одного из условий, создающих повышенную опасность:
    • сырость или токопроводящая пыль;
    • токопроводящие полы (металлические, земляные, железобетонные, кирпичные и т. п.);
    • высокая температура;
    • возможность одновременного прикосновения человека к металлоконструкциям зданий, имеющим соединение с землей, технологическим аппаратам, механизмам и т. п., с одной стороны, и к металлическим корпусам электрооборудования — с другой.
  3. Особо опасные помещения, характеризующиеся наличием одного из условий, создающих особую опасность:
    • особая сырость;
    • химически активная среда;
    • одновременно два или более условия повышенной опасности.

Как различаются производственные помещения по доступности электрооборудования?

По доступности электрооборудования различаются следующие помещения:

  1. Замкнутые электротехнические помещения, в которых установлено электрооборудование, не требующее постоянного надзора, и поэтому находящиеся под замком. В этих помещениях лишь для кратковременного ремонта находится электротехнический персонал, внимание которого не должно быть ослаблено.
  2. Электротехнические помещения или их отгороженные части, в которых установлено электрооборудование, требующее постоянного присутствия электротехнического персонала. Так как люди находятся в этих помещениях длительное время, то возможны ослабление внимания и как следствие — контакт с элементами электроустановки, находящимися под опасным напряжением.
  3. Производственные помещения, в которых длительный контакт с электрооборудованием (электропроводами станков, осветительными устройствами и т. д.) имеют лица без специальной подготовки.
  4. Конторские и бытовые помещения (жилые, столовые и т. п.).

ДЕЛЕНИЕ ЭЛЕКТРОУСТАНОВОК В ОТНОШЕНИИ МЕР БЕЗОПАСНОСТИ

Прежде чем перейти к анализу процессов, происходящих в электроустановках переменного и постоянного тока напряжением до 1000 В и выше и приводящих к поражению электрическим током людей и животных, в целях обеспечения их безопасности, рассмотрим разделение электроустановок в отношении мер электробезопасности.

Согласно [8] все электроустановки в отношении мер электробезопасности разделяются следующим образом:

электроустановки напряжением до 1000 В в сетях с глухозазем- ленной нейтралью;

электроустановки напряжением до 1000 В в сетях с изолированной нейтралью;

электроустановки напряжением выше 1000 В в сетях с глухоза- земленной или эффективно заземленной нейтралью;

электроустановки напряжением выше 1000 В в сетях с изолированной или заземленной через дугогасящий реактор или резистор нейтралью.

Согласно ПУЭ [8] для электроустановок напряжением до 1000 В приняты следующие обозначения’.

система TN — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников;

система TN—С — система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем его протяжении (рис. 4.1);

система TN—S — система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении (рис. 4.2);

система TNC-S — система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части начиная от источника питания (рис. 4.3);

Рис. 4.1. Система ГХ—С:

о — переменного тока; б — постоянного тока. Нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике: / — заземлитель нейтрали (средней точки) источника питания; 2 — открытые проводящие части; 3 — источник питания постоянного тока

Рис. 4.2. Система ТХ—5:

а — переменного тока; б — постоянного тока. Нулевой защитный и нулевой рабочий проводники разделены: / — заземлитель нейтрали источника переменного тока; /—1 — заземлитель вывода источника постоянного тока; /—2 — заземлитель средней точки источника постоянного тока; 2 — открытые проводящие части; 3 — источник питания

Рис. 4.3. Система 779—С—.9:

а — переменного тока; б ив — постоянного тока. 11улевой защитный и нулевой рабочий проводники совмещены в одном проводнике в части системы: I — заземлитель нейтрали источника переменного тока; /—1 — заземлитель вывода источника постоянного тока; I—2 — заземлитель средней точки источника постоянного тока; 2 — открытые проводящие части; 3 — источник питания

система 1Т — система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены (рис. 4.4);

система ТТ — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены с помощью заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника (рис. 4.5).

Рис. 4.4. Система /Г:

а — переменного тока; бив — постоянного тока. Открытые проводящие части электроустановки заземлены. Нейтраль источника питания изолирована от земли или заземлена через большое сопротивление: / — сопротивление заземления нейтрали источника питания (если имеется); 2 — заземлитель; 3 — открытые проводящие части; 4 — заземляющее устройство электроустановки; 5 — источник питания

В обозначениях систем:

первая буква обозначает состояние нейтрали источника питания относительно земли; Т — заземленная нейтраль; / — изолированная нейтраль;

вторая буква указывает на состояние открытых проводящих частей относительно земли: Т — открытые проводящие части заземлены независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети; N — открытые проводящие части присоединены к глухозаземленной нейтрали источника питания.

Последующие после N буквы отражают совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников:

Рис. 4.5. Система ГГ:

а и б — переменного тока; виг — постоянного тока. Открытые проводящие части электроустановки заземлены с помощью заземлителя, электрически независимого от заземлителя нейтрали: / — заземлитель нейтрали источника переменного тока; /—I — заземлитель вывода источника постоянного тока; 2 — открытые проводящие части; 3 — заземлитель открытых проводящих частей электроустановки; 4 — источник питания

5 — нулевой рабочий (АО и нулевой защитный (РЕ) проводники разделены;

С— функции нулевого защитного и пулевого рабочего проводников совмещены в одном проводнике (/’?^-проводник);

ЛА/ — нулевой рабочий (нейтральный) проводник;

Г — защитный проводник (заземляющий проводник; нулевой защитный проводник; защитный проводник системы уравнивания потенциалов);

РЕЕ’-]Е — совмещенный нулевой защитный и нулевой рабочий проводники.

Как было отмечено выше, в соответствии с ПУЭ [8] электрическая сеть с эффективно заземленной нейтралью — это трехфазная электрическая сеть напряжением выше 1000 В, в которой коэффициент замыкания на землю не превышает 1,4. Под коэффициентом замыкания на землю в трехфазной электрической сети следует понимать отношение разности потенциалов между неповрежденной фазой и землей в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землей в этой точке до замыкания.

Под глухозаземленной нейтралью следует понимать нейтраль трансформатора или генератора, присоединенную непосредственно к заземляющему устройству. Глухозаземленным может быть также вывод однофазного источника переменного тока или полюс источника постоянного тока в трехпроводных сетях постоянного тока.

Изолированная нейтраль — это нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление приборов сигнализации, измерения, защиты и других аналогичных им устройств.

Проводящей частью является часть, которая может проводить электрический ток.

Токопроводящей частью является проводящая часть электроустановки, находящейся в процессе ее работы под рабочим напряжением, в том числе нулевой рабочий проводник (но не РЕМ-проводник).

Согласно ПУЭ под открытой проводящей частью (ОПЧ) следует понимать доступную прикосновению проводящую часть электроустановки, которая нормально не находит под напряжением, но которая может оказаться под напряжением при повреждении основной изоляции.

Сторонней проводящей частью является проводящая часть, не являющаяся частью электроустановки.

Прямое прикосновение — это электрический контакт людей или животных с токоведущими частями, находящимися под напряжением. Защита от прямого прикосновения должна предотвращать прикосновение к токоведущим частям, находящимся под напряжением.

Косвенное прикосновение — электрический контакт людей или животных с открытыми проводящими частями, оказавшимися под напряжением при повреждении изоляции. Защитой от косвенного прикосновения является защита от поражения электрическим током при прикосновении к открытым проводящим частям, оказавшимся под напряжением при повреждении изоляции.

Согласно ПУЭ следует различать основную, дополнительную, двойную и усиленную изоляцию.

Под основной изоляцией следует понимать изоляцию токоведущих частей, обеспечивающую в том числе защиту от прямого прикосновения.

Под дополнительной изоляцией понимают независимую изоляцию в электроустановках до 1000 В, выполняемую дополнительно к основной изоляции для защиты при косвенном прикосновении.

Усиленная изоляцияэто изоляция в электроустановках напряжением до 1000 В, обеспечивающая степень защиты от поражения электрическим током, равноценную двойной изоляции.

Защитный (РЕ) проводник — проводник, предназначенный для защитного заземления.

Защитный заземляющий проводник — это защитный проводник, предназначенный для защитного заземления.

Под нулевым защитным проводником следует понимать защитный проводник в электроустановках до 1000 В, предназначенный для присоединения открытых проводящих частей к глухозаземлен- иой нейтрали источника питания.

Защитным проводником уравнивания потенциалов является защитный проводник, предназначенный для защитного заземления.

Нулевой рабочий (нейтральный) проводник (N) в электроустановках до 1000 В предназначен для питания электроприемников, он соединяется с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной точкой источника в сетях постоянного тока.

Совмещенные нулевой защитный и нулевой рабочий PEN-npoeod- ники в электроустановках напряжением до 1000 В совмещают функции нулевого защитного и нулевого рабочего проводников.

Контрольные вопросы к главе 4

  • 1. Как разделяются электроустановки в отношении мер электробезопасности в сетях до 1000 и выше 1000 В?
  • 2. Какие обозначения согласно ПУЭ приняты для электроустановок напряжением до 1000 В?
  • 3. Чем различаются система TNи система TN—С?
  • 4. Чем различаются система TN—S и система TN—С—S3
  • 5. Чем различаются система 77′ и система /Г?
  • 6. Какое смысловое значение имеют буквы /, Т, N, S, С, РЕ и РЕМ в обозначениях систем?
  • 7. Что заключено в понятии «глухозаземленная нейтраль»?
  • 8. Что заключено в понятии «изолированная нейтраль»?
  • 9. Что заключено в понятии «открытая проводящая часть»?
  • 10. Что заключено в понятии «сторонняя проводящая часть»?
  • 11. Что называется прямым прикосновением?
  • 12. Что называется косвенным прикосновением?
  • 13. Какие виды изоляции существуют для защиты от прикосновения?
  • 14. Какие виды заземляющих проводников применяются в различных системах?
Понравилась статья? Поделиться с друзьями:
Добавить комментарий