Какое тело обладает кинетической энергией

Потенциальная и кинетическая энергия. Закон сохранения механической энергии

1. Камень, упав с некоторой высоты на Землю, оставляет на поверхности Земли вмятину. Во время падения он совершает работу по преодолению сопротивления воздуха, а после касания земли — работу по преодолению силы сопротивления почвы, поскольку обладает энергией. Если накачивать в закрытую пробкой банку воздух, то при некотором давлении воздуха пробка вылетит из банки, при этом воздух совершит работу по преодолению трения пробки о горло банки, благодаря тому, что воздух обладает энергией. Таким образом, тело может совершить работу, если оно обладает энергией. Энергию обозначают буквой ​ ( E ) ​. Единица работы — ​ ( [E,] ) ​ = 1 Дж.

При совершении работы изменяется состояние тела и изменяется его энергия. Изменение энергии равно совершенной работе: ​ ( E=A ) ​.

2. Потенциальной энергией называют энергию взаимодействия тел или частей тела, зависящую от их взаимного положения.

Поскольку тела взаимодействуют с Землёй, то они обладают потенциальной энергия взаимодействия с Землёй.

Если тело массой ​ ( m ) ​ падает с высоты ​ ( h_1 ) ​ до высоты ​ ( h_2 ) ​, то работа силы тяжести ​ ( F_т ) ​ на участке ​ ( h=h_1-h_2 ) ​ равна: ​ ( A = F_тh = mgh = mg(h_1 — h_2) ) ​ или ( A = mgh_1 — mgh_2 ) (рис. 48).

В полученной формуле ​ ( mgh_1 ) ​ характеризует начальное положение (состояние) тела, ( mgh_2 ) характеризует конечное положение (состояние) тела. Величина ( mgh_1=E_ <п1>) — потенциальная энергия тела в начальном состоянии; величина ( mgh_2=E_ <п2>) — потенциальная энергия тела в конечном состоянии.

Можно записать ​ ( A=E_<п1>-E_ <п2>) ​, или ( A=-(E_<п2>-E_<п1>) ) , или ( A=-E_ <п>) .

Таким образом, работа силы тяжести равна изменению потенциальной энергии тела. Знак «–» означает, что при движении тела вниз и соответственно при совершении силой тяжести положительной работы потенциальная энергия тела уменьшается. Если тело поднимается вверх, то работа силы тяжести отрицательна, а потенциальная энергия тела увеличивается.

Если тело находится на некоторой высоте ​ ( h ) ​ относительно поверхности Земли, то его потенциальная энергия в данном состоянии равна ​ ( E_п=mgh ) ​. Значение потенциальной энергии зависит от того, относительно какого уровня она отсчитывается. Уровень, на котором потенциальная энергия равна нулю, называют нулевым уровнем.

В отличие от кинетической энергии потенциальной энергией обладают покоящиеся тела. Поскольку потенциальная энергия — это энергия взаимодействия, то она относится не к одному телу, а к системе взаимодействующих тел. В данном случае эту систему составляют Земля и поднятое над ней тело.

3. Потенциальной энергией обладают упруго деформированные тела. Предположим, что левый конец пружины закреплён, а к правому её концу прикреплён груз. Если пружину сжать, сместив правый её конец на ​ ( x_1 ) ​, то в пружине возникнет сила упругости ​ ( F_ <упр1>) ​, направленная вправо (рис. 49).

Если теперь предоставить пружину самой себе, то её правый конец переместится, удлинение пружины будет равно ( x_2 ) ​, а сила упругости ( F_ <упр2>) .

Работа силы упругости равна

​ ( kx_1^2/2=E_ <п1>) ​ — потенциальная энергия пружины в начальном состоянии, ( kx_2^2/2=E_ <п2>) — потенциальная энергия пружины во конечном состоянии. Работа силы упругости равна изменению потенциальной энергии пружины.

Можно записать ​ ( A=E_<п1>-E_ <п2>) ​, или ( A=-(E_<п2>-E_<п1>) ) , или ( A=-E_ <п>) .

Знак «–» показывает, что при растяжении и сжатии пружины сила упругости совершает отрицательную работу, потенциальная энергия пружины увеличивается, а при движении пружины к положению равновесия сила упругости совершает положительную работа, а потенциальная энергия уменьшается.

Если пружина деформирована и её витки смещены относительно положения равновесия на расстояние ​ ( x ) ​, то потенциальная энергия пружины в данном состоянии равна ​ ( E_п=kx^2/2 ) ​.

4. Движущиеся тела так же могут совершить работу. Например, движущийся поршень сжимает находящийся в цилиндре газ, движущийся снаряд пробивает мишень и т.п. Следовательно, движущиеся тела обладают энергией. Энергия, которой обладает движущееся тело, называется кинетической энергией. Кинетическая энергия ​ ( E_к ) ​ зависит от массы тела и его скорости ( E_к=mv^2/2 ) . Это следует из преобразования формулы работы.

Работа ​ ( A=FS ) ​. Сила ​ ( F=ma ) ​. Подставив это выражение в формулу работы, получим ​ ( A=maS ) ​. Так как ​ ( 2aS=v^2_2-v^2_1 ) ​, то ​ ( A=m(v^2_2-v^2_1)/2 ) ​ или ( A=mv^2_2/2-mv^2_1/2 ) , где ​ ( mv^2_1/2=E_ <к1>) ​ — кинетическая энергия тела в первом состоянии, ( mv^2_2/2=E_ <к2>) — кинетическая энергия тела во втором состоянии. Таким образом, работа силы равна изменению кинетической энергии тела: ​ ( A=E_<к2>-E_ <к1>) ​, или ​ ( A=E_к ) ​. Это утверждение — теорема о кинетической энергии.

Если сила совершает положительную работу, то кинетическая энергия тела увеличивается, если работа силы отрицательная, то кинетическая энергия тела уменьшается.

5. Полная механическая энергия ​ ( E ) ​ тела — физическая величина, равная сумме его потенциальной ​ ( E_п ) ​ и кинетической ( E_п ) энергии: ( E=E_п+E_к ) .

Пусть тело падает вертикально вниз и в точке А находится на высоте ​ ( h_1 ) ​ относительно поверхности Земли и имеет скорость ​ ( v_1 ) ​ (рис. 50). В точке В высота тела ( h_2 ) и скорость ( v_2 ) Соответственно в точке А тело обладает потенциальной энергией ​ ( E_ <п1>) ​ и кинетической энергией ( E_ <к1>) , а в точке В — потенциальной энергией ( E_ <п2>) и кинетической энергией ( E_ <к2>) .

При перемещении тела из точки А в точку В сила тяжести совершает работу, равную А. Как было показано, ​ ( A=-(E_<п2>-E_<п1>) ) ​, а также ( A=E_<к2>-E_ <к1>) . Приравняв правые части этих равенств, получаем: ​ ( -(E_<п2>-E_<п1>)=E_<к2>-E_ <к1>) ​, откуда ( E_<к1>+E_<п1>=E_<п2>+E_ <к2>) или ​ ( E_1=E_2 ) ​.

Это равенство выражает закон сохранения механической энергии: полная механическая энергия замкнутой системы тел, между которыми действуют консервативные силы (силы тяготения или упругости) сохраняется.

В реальных системах действуют силы трения, которые не являются консервативными, поэтому в таких системах полная механическая энергия не сохраняется, она превращается во внутреннюю энергию.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Два тела находятся на одной и той же высоте над поверхностью Земли. Масса одного тела ​ ( m_1 ) ​ в три раза больше массы другого тела ​ ( m_2 ) ​. Относительно поверхности Земли потенциальная энергия

1) первого тела в 3 раза больше потенциальной энергии второго тела
2) второго тела в 3 раза больше потенциальной энергии первого тела
3) первого тела в 9 раз больше потенциальной энергии второго тела
4) второго тела в 9 раз больше потенциальной энергии первого тела

2. Сравните потенциальную энергию мяча на полюсе ​ ( E_п ) ​ Земли и на широте Москвы ​ ( E_м ) ​, если он находится на одинаковой высоте относительно поверхности Земли.

1) ​ ( E_п=E_м ) ​
2) ( E_п>E_м )
3) ( E_п
4) ( E_пgeq E_м )

3. Тело брошено вертикально вверх. Его потенциальная энергия

1) одинакова в любые моменты движения тела
2) максимальна в момент начала движения
3) максимальна в верхней точке траектории
4) минимальна в верхней точке траектории

4. Как изменится потенциальная энергия пружины, если её удлинение уменьшить в 4 раза?

1) увеличится в 4 раза
2) увеличится в 16 раз
3) уменьшится в 4 раза
4) уменьшится в 16 раз

5. Лежащее на столе высотой 1 м яблоко массой 150 г подняли относительно стола на 10 см. Чему стала равной потенциальная энергия яблока относительно пола?

1) 0,15 Дж
2) 0,165 Дж
3) 1,5 Дж
4) 1,65 Дж

6. Скорость движущегося тела уменьшилась в 4 раза. При этом его кинетическая энергия

1) увеличилась в 16 раз
2) уменьшилась в 16 раз
3) увеличилась в 4 раза
4) уменьшилась в 4 раза

7. Два тела движутся с одинаковыми скоростями. Масса второго тела в 3 раза больше массы первого. При этом кинетическая энергия второго тела

1) больше в 9 раз
2) меньше в 9 раз
3) больше в 3 раза
4) меньше в 3 раза

8. Тело падает на пол с поверхности демонстрационного стола учителя. (Сопротивление воздуха не учитывать.) Кинетическая энергия тела

1) минимальна в момент достижения поверхности пола
2) минимальна в момент начала движения
3) одинакова в любые моменты движения тела
4) максимальна в момент начала движения

9. Книга, упавшая со стола на пол, обладала в момент касания пола кинетической энергией 2,4 Дж. Высота стола 1,2 м. Чему равна масса книги? Сопротивлением воздуха пренебречь.

1) 0,2 кг
2) 0,288 кг
3) 2,0 кг
4) 2,28 кг

10. С какой скоростью следует бросить тело массой 200 г с поверхности Земли вертикально вверх, чтобы его потенциальная энергия в наивысшей точке движения была равна 0,9 Дж? Сопротивлением воздуха пренебречь. Потенциальную энергию тела отсчитывать от поверхности земли.

1) 0,9 м/с
2) 3,0 м/с
3) 4,5 м/с
4) 9,0 м/с

11. Установите соответствие между физической величиной (левый столбец) и формулой, по которой она вычисляется (правый столбец). В ответе запишите подряд номера выбранных ответов

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A. Потенциальная энергия взаимодействия тела с Землёй
Б. Кинетическая энергия
B. Потенциальная энергия упругой деформации

ХАРАКТЕР ИЗМЕНЕНИЯ ЭНЕРГИИ
1) ​ ( E=mv^2/2 ) ​
2) ( E=kx^2/2 ) ​
3) ( E=mgh ) ​

12. Мяч бросили вертикально вверх. Установите соответствие между энергией мяча (левый столбец) и характером её изменения (правый столбец) при растяжении пружины динамометра. В ответе запишите подряд номера выбранных ответов.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A. Потенциальная энергия
Б. Кинетическая энергия
B. Полная механическая энергия

ХАРАКТЕР ИЗМЕНЕНИЯ ЭНЕРГИИ
1) Уменьшается
2) Увеличивается
3) Не изменяется

Часть 2

13. Пуля массой 10 г, движущаяся со скоростью 700 м/с, пробила доску толщиной 2,5 см и при выходе из доски имела скорость 300 м/с. Определить среднюю силу сопротивления, воздействующую на пулю в доске.

10 примеров кинетической энергии в повседневной жизни

некоторые примеры кинетической энергии повседневной жизни может быть движение американских горок, мяча или машины.

Кинетическая энергия – это энергия, которой обладает объект, когда он находится в движении и его скорость постоянна. Оно определяется как усилие, необходимое для ускорения тела с определенной массой, чтобы оно перешло из состояния покоя в состояние с движением (Классная комната, 2016 г.).

Предполагается, что в той степени, в которой масса и скорость объекта постоянны, будет происходить и его ускорение. Таким образом, если скорость изменяется, то изменяется и значение, соответствующее кинетической энергии..

Когда вы хотите остановить движущийся объект, необходимо приложить отрицательную энергию, которая противодействует значению кинетической энергии, которую приносит объект. Величина этой отрицательной силы должна быть равна величине кинетической энергии, чтобы объект мог остановиться (Nardo, 2008).

Коэффициент кинетической энергии обычно сокращается буквами T, K или E (E- или E + в зависимости от направления силы). Точно так же термин «кинетический» происходит от греческого слова «κίνησις» или «kinēsis», что означает движение. Термин «кинетическая энергия» был впервые введен Уильямом Томсоном (лорд Кевин) в 1849 году..

Из исследования кинетической энергии выводятся исследования движения тел в горизонтальном и вертикальном направлении (падения и смещения). Коэффициенты проникновения, скорости и воздействия также были проанализированы (Академия, 2017).

Примеры кинетической энергии

Кинетическая энергия вместе с потенциалом включает в себя большинство энергий, перечисленных физикой (ядерная, гравитационная, упругая, электромагнитная, среди прочих).

1- сферические тела

Когда два сферических тела движутся с одинаковой скоростью, но имеют разную массу, тело большей массы будет развивать больший коэффициент кинетической энергии. Это случай двух мраморов разного размера и веса.

Приложение кинетической энергии также можно наблюдать, когда мяч брошен так, что он достигает рук приемника..

Мяч переходит из состояния покоя в состояние движения, где он приобретает коэффициент кинетической энергии, который сводится к нулю, как только он попадает в приемник (BBC, 2014).

2- американские горки

Когда автобусы американских горок находятся наверху, их коэффициент кинетической энергии равен нулю, потому что эти вагоны в покое.

Как только их притягивает сила тяжести, они начинают двигаться на полной скорости во время спуска. Это означает, что кинетическая энергия будет постепенно увеличиваться с увеличением скорости.

Когда внутри машины для американских горок будет больше пассажиров, коэффициент кинетической энергии будет выше, пока скорость не уменьшится. Это потому что машина будет иметь большую массу.

3- Бейсбол

Когда объект находится в состоянии покоя, его силы уравновешены и значение кинетической энергии равно нулю. Когда бейсбольный кувшин держит мяч до броска, он отдыхает.

Однако, как только мяч брошен, он постепенно и за короткий промежуток времени набирает кинетическую энергию, чтобы перемещаться из одного места в другое (из точки метателя в руки приемника)..

4- Автомобили

Автомобиль, который находится в состоянии покоя, имеет энергетический коэффициент, равный нулю. Как только это транспортное средство ускоряется, его коэффициент кинетической энергии начинает увеличиваться, так что, по мере увеличения скорости, будет больше кинетической энергии (Softschools, 2017).

5- Велоспорт

Велосипедист, который находится в начальной точке, не совершая никакого движения, имеет коэффициент кинетической энергии, равный нулю. Однако, как только вы начинаете крутить педали, эта энергия увеличивается. Вот как на более высоких скоростях, тем больше кинетическая энергия.

Когда наступит время, когда вы должны остановиться, велосипедист должен замедлить движение и применить противодействующие силы, чтобы замедлить мотоцикл и снова найти его с коэффициентом энергии, равным нулю..

6- Бокс и удар

Пример силы удара, который получается из коэффициента кинетической энергии, очевиден во время матча по боксу. Оба противника могут иметь одинаковую массу, но один из них может быть быстрее в движениях.

Таким образом, коэффициент кинетической энергии будет выше, чем у двигателя с большим ускорением, что гарантирует больший удар и мощность удара (Lucas, 2014).

7- Открытие дверей в средние века

Как и в случае с боксером, принцип кинетической энергии широко использовался в средние века, когда толкались тяжелые тараны, чтобы открыть ворота замков..

В той степени, в которой таран или туловище двигались с более высокой скоростью, тем сильнее.

8- Падение камня или отряда

Перемещение камня в гору требует силы и ловкости, особенно когда камень имеет большую массу.

Тем не менее, спуск с того же камня вниз по склону будет быстрым благодаря силе гравитации на вашем теле. Таким образом, с увеличением ускорения коэффициент кинетической энергии будет увеличиваться.

Пока масса камня больше и ускорение постоянное, коэффициент кинетической энергии будет пропорционально выше (FAQ, 2016).

9- Падение вазы

Когда ваза падает со своего места, она переходит из состояния покоя в движение. Когда сила тяжести оказывает свою силу, ваза начинает набирать ускорение и постепенно накапливает кинетическую энергию в своей массе. Эта энергия высвобождается, когда ваза падает на землю и разбивается.

10- человек на скейтборде

Когда человек, едущий на скейтборде, находится в состоянии покоя, его энергетический коэффициент будет равен нулю. Как только он начинает движение, его коэффициент кинетической энергии будет постепенно увеличиваться.

Точно так же, если этот человек имеет большую массу или его скейтборд способен двигаться быстрее, его кинетическая энергия будет больше.

Какое тело обладает кинетической энергией

Существуют два вида механической энергии: потенциальная и кинетическая.

1. Какую энергию называют потенциальной?

Потенциальной энергией называется энергия, которая определяется взаимным положением взаимодействующих тел или частей одного и того же тела.

а). Потенциальной энергией обладает тело, поднятое относительно поверхности Земли.
Здесь потенциальная энергия тела зависит от взаимного положения тела и Земли и их взаимного притяжения.
Потенциальная энергия тела, поднятого на какую-то высоту, определится работой, которую совершит сила тяжести при падении тела на Землю.

где
Еп — потенциальная энергия (Дж),
F — сила тяжести (Н),
g — ускорение свободного падения (м/с2),
m — масса тела (кг),
h — высота, на которую поднято тело (м).

Потенциальную энергию молота копра используют в строительстве для забивания свай.

Каждый кубический метр текущей воды в реке обладает потенциальной энергией.
Ведь течение воды в реке возможно, если уровень поверхности земли у истока (в начале реки) выше, чем уровень поверхности земли в устье, т.е. вода течет под горку. Этот перепад высот и определяет величину потенциальной энергии воды. В истоках каждый кубометр воды будет обладать большей потенциальной энергией, чем в устье.

Огромной потенциальной энергией обладает вода в реках, удерживаемая плотинами. Падая вниз, вода совершает работу, приводя в движение мощные турбины электростанций.


б). Потенциальной энергией обладает всякое упругое деформированное тело.

Дверная пружина при открывании двери растягивается (деформируется) и за счет приобретенной потенциальной энергии, сокращаясь, совершает работу, т.е. закрывает дверь.

Энергию пружин используют в ручных часах и заводных игрушках.

Потенциальную энергию сжатого газа используют в тепловых двигателях, в отбойных молотках.

2. От каких величин зависит потенциальная энергия?

Потенциальная энергия тела зависит от массы тела и высоты подъема над поверхностью земли.
(смотри формулу)

Сосулька, падающая с крыши пятиэтажного дома, будет обладат большим запасом потенциальной энергии, чем такая же, падающая с балкона второго этажа.

Большой камень и маленький камушек, поднятые на одинаковую высоту, в результате падения на землю совершат разную работу, один пробьет глубокую яму, а другой – лишь незначительную вмятину. Из-за разной массы они будут обладать различной потенциальной энергией.

3. Когда потенциальная энергия тела равна нулю?

Если тело лежит на поверхности Земли, то его потенциальная энергия равна нулю.
Если тело (например, пружина, кусок резины или резиновый мяч) упруго не деформировано, то его потенциальная энергия тоже равна нулю.

4. Какую энергию называют кинетической?

Энергия, которой обладает тело вследствие своего движения, называется кинетической энергией ( кинема — движение).

Любое движущееся тело обладает кинетической энергией.

где
Ек — кинетическая ээнергия (Дж),
m — масса тела (кг),
v — скорость движения тела ((м/с).

Движущаяся молекула обладает кинетической энергией.

Едущий автомобиль, идущий человек обладают кинетической энергий.

Кинетической энергией обладает движущаяся вода в реке.

Кинетической энергией обладает и движущийся воздух — ветер.

5. От каких величин зависит кинетическая энергия?

Кинетическая энергия зависит от массы тела и его скорости.
(смотри формулу)

Чем больше масса тела и скорость, с которой оно движется, тем больше его кинетическая энергия.

При одинаковой скорости полета большей кинетической энергией будет обладать птица по сравнению с мухой, ведь масса птицы больше, чем масса мухи.

Если сравнить кинетическую энергию кубического метра текущей воды в равнинной и горной реке, то понятно, что за счет большей скорости течения воды в горной реке, эта вода будет обладать большей кинетической энергией, чем вода в равнинной реке.

5. В каком случае кинетическая энергия тела равна нулю?

Кинетическая энергия тела в состоянии покоя равна нулю.

6. Может ли тело одновременно обладать и потенциальной, и кинетической ээнергией?

Все тела в природе обладают либо потенциальной, либо кинетической энергией, а иногда той и другой вместе.

Летящий самолет обладает относительно Земли и кинетической и потенциальной энергией.

10 лучших примеров кинетической энергии

Кинетическая энергия – это энергия движения: если что-то движется, говорят, что оно имеет кинетическую энергию. Согласно классической механике, кинетическая энергия (E) не вращающегося объекта зависит от его массы (m) и скорости (v).

E = ½mv 2

Поскольку энергия является скалярной величиной, она не зависит от направления и всегда положительна. Если вы удвоите массу, вы удвоите и энергию. Однако, если вы удвоите скорость, энергия увеличится в четыре раза.

Кинетическую энергию можно разделить на три группы в зависимости от типа движения объекта.

  1. Поступательная кинетическая энергия: это энергия, обусловленная движением из одного положения в другое. Например, поезд, движущийся по рельсам, или предметы, свободно падающие под действием силы тяжести, обладают поступательной кинетической энергией.
  2. Вращательная кинетическая энергия: энергия, возникающая из-за вращательного движения. Вращение Земли является прекрасным примером вращательной кинетической энергии.
  3. Колебательная кинетическая энергия – это энергия, обусловленная колебательным движением. Движение камертона является ярким примером вибрационной кинетической энергии.

Стандартная единица измерения кинетической энергии является Джоуль. Она может передаваться между объектами и преобразовываться в другие виды энергии.

Например, бегун использует химическую энергию (предоставляемую пищей) для ускорения. В этом случае химическая энергия преобразуется в энергию движения, т.е. кинетическую энергию. Однако этот процесс не является полностью эффективным, так как много энергии теряется в тепле.

Кинетическая энергия в основном проявляется в пяти различных формах: механической, электрической, тепловой, излучающей и звуковой. Чтобы лучше объяснить это количественное свойство, мы собрали несколько простейших и наиболее основных примеров кинетической энергии, которая происходит в повседневной жизни.

1. Движущийся автомобиль

Форма механической энергии

Само определение кинетической энергии – это энергия, которой тело обладает в силу движения. По этому определению каждое движущееся транспортное средство обладает определенной кинетической энергией.

Чем больше масса и скорость транспортного средства, тем больше кинетической энергии он будет иметь. У автомобиля будет более высокая кинетическая энергия, чем у мотоцикла (учитывая, что оба движутся с одинаковой скоростью, но у автомобиля больше массы).

Точно так же летающий истребитель или космический корабль (такой, как Международная космическая станция на низкой околоземной орбите) обладает очень большим количеством кинетической энергии.

2. Езда на велосипеде

Форма механической энергии

Езда на велосипеде – это богатый источник кинетической энергии. Велосипедист изначально имеет химическую энергию, хранящуюся в его организме в результате приема пищи. По мере того как он прикладывает направленную вниз силу на педаль велосипеда, химическая энергия преобразована в кинетическую энергию.

Однако такое преобразование энергии не очень эффективно. Велосипедист также использует значительное количество химической энергии для получения тепла и преодоления трения и сопротивления воздуха.

3. Падение телефона на пол

Форма механической энергии

Что происходит, когда вы случайно роняете свой телефон? Он ускоряется за счет гравитационной силы, набирая скорость и импульс.

Любой падающий объект будет продолжать ускоряться до тех пор, пока восходящая сила сопротивления воздуха полностью не уравновесит нисходящую силу, действующую из-за гравитации. В этом случае, однако, мы можем пренебречь сопротивлением воздуха, так как оно намного ниже силы тяготения.

Изначально, в самой высокой точке, телефон обладает максимальной потенциальной энергией. При падении эта энергия преобразуется в кинетическую энергию. Чем больше масса телефона, тем больше кинетической энергии он будет достигать.

Когда телефон ударяется о пол, эта кинетическая энергия переходит в производство звука, вызывая отскок телефона, и ломает или деформирует его тело.

4. Пуля, выпущенная из пистолета

Форма механической энергии

Пуля, летящая по воздуху, обладает чрезвычайно высокой кинетической энергией. Ее также называют дульной энергией. Если не принимать во внимание внешние факторы (такие, как гравитация и аэродинамика), то дульная энергия примерно указывает на разрушительный потенциал данного огнестрельного оружия или патрона.

Чем быстрее движется пуля и чем она тяжелее, тем выше ее кинетическая энергия и тем больше урона она нанесет.

5. Молния во время грозы

Форма электрической энергии

Электрическая энергия – это вид кинетической энергии, вызываемой потоком отрицательно заряженных электронов. Количество энергии пропорционально скорости движения электронов: чем быстрее они движутся, тем больше энергии они несут. Именно это движение электронов и питает наши электрические устройства.

Молния во время грозы является ярким примером электрической энергии. То, что вы на самом деле видите, это мгновенный разряд электронов, вызванный статическим электричеством в облаках. По мере того как молния нагревает воздух, она производит ударную волну, вызывая звук грозы.

6. Электричество, обеспечиваемое автомобильной аккумуляторной батареей.

Форма электрической энергии

Автомобильный аккумулятор преобразует химическую энергию в электрическую, доступ к которой осуществляется через клеммы аккумулятора. Химический процесс в разрядной батарее освобождает электроны от анода к катоду. Эти движущиеся электроны обеспечивают электричество для цепей в автомобиле.

Для зарядки батареи поток электронов обратный (от катода к аноду). Кроме того, эти аккумуляторы предназначены для выпуска высокого всплеска тока, а затем быстро заряжается.

7. Вибрирующие стереодинамики

Форма звуковой энергии

Звук – это движение энергии через среду (такую как вода или воздух) и вызвано вибрациями. Звуковая энергия распространяется в виде волн и достигает наших барабанных перепонок, которые затем вибрируют, и наш мозг интерпретирует ее как звук.

Стереодинамики (или все, что производит звук) работает таким же образом. Если вы проигрываете его громче и кладете на него руку, вы почувствуете, как он вибрирует. Что на самом деле происходит, так это то, что колонка движется вперед и назад, надавливая на частицы воздуха, что изменяет давление воздуха и генерирует звуковые волны.

Еще одним отличным примером может служить игра на барабанах; когда вы бьете по барабану, его поверхность вибрирует и вызывает звук.
В отличие от света, звук не может проходить через вакуум, так как нет атомов, которые могли бы передавать вибрацию.

8. Фотоны, испускаемые лампой накаливания

Форма излучающей энергии

В традиционной электрической лампочке, также называемой лампой накаливания, электрический ток перемещается от одного металлического контакта к другому. По мере того как течение пропускает через проводы и нить вольфрама, нить нагреют до пункта где она начинает испустить фотоны, небольшие пакеты видимого света.

Лампа также производит много тепла в дополнение к свету. Лампа накаливания мощностью 60 ватт, например, преобразует 60 джоулей электрической энергии в секунду в световую и тепловую энергию – обе формы излучаемой энергии.

Энергия излучения – это энергия, которая перемещается частицами или волнами. Она генерируется электромагнитными волнами, которые мы обычно испытываем в виде тепла.

9. Радиоволны, движущиеся со скоростью света

Форма излучающей энергии

Радиоволны также движутся в форме волн. Они имеют частоты от 3 кГц до 300 ГГц и соответствующие длины волн 100 километров и 1 миллиметр. Как и другие электромагнитные волны, радиоволны движутся со скоростью света. Радиостанции используют эти волны для передачи их содержания на большие расстояния.

Другим хорошим примером излучаемой энергии являются лучи, исходящие от Солнца. Вот почему вы чувствуете себя жарче в солнечном свете, чем в тени.

10. Кипящая вода

Форма тепловой энергии

Как и энергия излучения, тепловую энергию можно испытать в виде тепла или излучения. Однако между ними есть большая разница: если энергия излучения описывает движение частиц или волн, то тепловая энергия относится к уровню активности между молекулами и атомами в объекте.

Когда атомы и молекулы движутся быстрее и сталкиваются друг с другом, они создают тепловую энергию. Из-за этого движения тепловая энергия считается формой кинетической энергии.
Кипящая вода – лучший способ визуализации тепловой энергии. При нагревании воды кинетическая энергия отдельных молекул воды увеличивается. И она продолжает расти с температурой до тех пор, пока вода не достигнет точки кипения.

Примером кинетической энергии является также геотермальная энергия, получаемая в результате вулканического действия Земли и распада природных минералов.

Энергия. Кинетическая и потенциальная энергия

«Переворачивая каждый новый камень,

мы находим невообразимую странность,

ведущую нас к удивительным открытиям…»

Ричард Фейман

В этой теме познакомимся с очень важным физическим понятием – понятием энергии.

Люди часто употребляют слово энергия. Например, это электроэнергия, которая обеспечивает освещение в домах, освещение на улицах, да и работу различных приборов, таких, как компьютер, холодильник, микроволновая печь и так далее. Различные виды транспорта, такие как, автомобили, корабли, самолеты и так далее используют энергию топлива. Да и в самом человеке жизненные процессы поддерживаются за счет энергии, получаемой нами из пищи.

Понятие энергии связано с понятием работы. Например, человек может совершить работу, подняв рюкзак на некоторую высоту. На это он затрачивает энергию. Сам рюкзак не совершает работы, но если его резко отпустить, то он упадет и совершит работу, ударившись об землю. Также работу может совершать и движущийся автомобиль: его двигатель с некоторой силой тянет автомобиль, перемещая его на определенное расстояние. Более того, движущийся автомобиль может привести в движение какое-то неподвижное препятствие, оказавшееся у него на пути, а, значит, совершит работу.

Если тело способно совершить работу, то говорят, что оно обладает энергией. Чем большую работу может совершить тело, тем большей энергией оно обладает. Таким образом, энергия – это физическая величина, показывающая, какую работу может совершить тело. Энергию обозначают буквой E и в системе СИ измеряют в джоулях (так же, как и работу).

Совершенная работа равна изменению энергии. Энергия, как и работа, является скалярной величиной (она не может быть куда-либо направлена).

A = DE

Существует несколько видов энергии. В этой теме речь пойдёт только о двух видах энергии: кинетической энергией и потенциальной энергией. Кинетическая и потенциальная энергия, в общем случае, называется механической энергией.

Потенциальная энергияэто энергия, которая определяется взаимным расположением взаимодействующих тел (или же частей одного и того же тела). Кинетическая энергия – это энергия, которой обладает всякое движущееся тело.

Рассмотрим потенциальную энергию. Название «потенциальная» происходит от латинского слова «потенциа», которое в переводе на русский означает «возможность». Скажем, поднятое над поверхностью Земли тело, обладает некоторой потенциальной энергией. Если считать, что потенциальная энергия тела, лежащего на поверхности Земли, равна нулю, то потенциальная энергия тела, поднятого на некоторую высоту, будет равна работе, которую совершит сила тяжести при падении тела на Землю. То есть, для того чтобы поднять тело на определенную высоту, нужно совершить работу против силы тяжести. Совершенная работа, равна изменению энергии. Но так как для поднятия тела нужно совершить работу против силы тяжести, работа равна изменению потенциальной энергии, взятому с противоположным знаком. Потенциальную энергию обозначают Eп.

Работа равна произведению силы и пути. Сила, в данном случае – это сила тяжести, путь – это высота, на которую поднято тело.

A = Fs

A = Fтяжh

Таким образом, потенциальная энергия тела, поднятого над Землей на высоту h равна

Очень большой потенциальной энергией обладает вода в реках, которую удерживают плотинами.

Из-за своей огромной массы эта вода может совершить огромную работу, падая даже с небольшой высоты. Именно это и используется людьми для создания гидроэлектростанций. Вода совершает работу, тем самым, заставляя гидротурбины вращаться. Вследствие этого, генераторы на электростанциях вырабатывают электроэнергию, которая потом передается в жилые дома, фабрики, заводы и так далее.

Необходимо отметить, что потенциальной энергией обладает всякое упруго деформированное тело. Если сжать пружину, то при распрямлении она способна будет совершить работу. Наиболее наглядный пример – это дверь на пружине: когда её открывают, совершают работу, растягивая пружину и, тем самым, сообщая ей некоторую энергию. А когда дверь отпускают, уже пружина сама совершает работу, и за счет сжатия, закрывает дверь.

Рассмотрим кинетическую энергию. Слово «кинетическая» происходит от латинского слова «кинема», которое переводится на русский язык как «движение». Эту энергию обозначают Eк. Идущий человек, едущий велосипедист или автомобиль обладают кинетической энергией. Можно сказать, что кинетическая энергия движущегося тела равна работе, которую нужно совершить, чтобы остановить это тело. Для того, чтобы определить, от чего зависит кинетическая энергия, проведем несколько опытов. Возьмем наклонную плоскость, а на горизонтальную плоскость положим брусок. С наклонной плоскости скатим шарик. После столкновения шарик переместит брусок на некоторое расстояние, то есть, совершит работу. Если скатить шарик с большей высоты, то он переместит брусок на большее расстояние, то есть, совершит больше работы. Это говорит нам о том, что шарик обладал большей энергией, чем в предыдущий раз. В чем же причина? Очевидно, что скатываясь с большей высоты, шарик набрал большую скорость. Из этого можно сделать вывод, что кинетическая энергия тем больше, чем больше скорость тела. Если скатить более массивный шарик с той же высоты, то брусок окажется ещё дальше, то есть, шарик совершит ещё большую работу, чем во второй раз. Значит, кинетическая энергия тем больше, чем больше масса тела. Это вполне логично: известно, что более массивное тело более инертно, то есть его сложнее остановить. И, конечно, чем быстрее движется тело, тем труднее остановить его. Кинетическая энергия вычисляется по формуле

То есть, кинетическая энергия равна половине произведения массы тела и квадрата его скорости.

Тело может обладать, как потенциальной, так и кинетической энергией одновременно. Рассмотрим несколько примеров. Кот, сидящий на дереве, обладает только потенциальной энергией. Он не двигается, но находится на определенной высоте над поверхностью Земли. Автомобиль, едущий по дороге, наоборот, обладает только кинетической энергией (он двигается, но находится на поверхности Земли, то есть, на нулевой высоте). А вот летящий самолет обладает и потенциальной, и кинетической энергией. Ведь он двигается с определенной скоростью и находится на определенной высоте. То же самое можно сказать и о летящей птице. В этом случае, полная механическая энергия тела будет равна сумме потенциальной и кинетической энергии.

Упражнения.

Задача 1. Найдите потенциальную энергию яблока, висящего на яблоне, на высоте 3 м над землей. Масса яблока равна 350 г.

Задача 2. Автомобиль массой 1,5 т едет со скоростью 60 км/ч, а автомобиль массой 9 ц едет со скоростью 80 км/ч. Определите, какой автомобиль обладает большей кинетической энергией?

Задача 3. Истребитель массой 26 т летит со скоростью три 3600 км/ч. Известно, что полная механическая энергия истребителя составляет 15 ГДж. На какой высоте летит истребитель?

Основные выводы:

Энергия – это физическая величина, показывающая, какую работу может совершить тело.

Энергия, как и работа, является скалярной величиной и измеряется в Дж (джоулях).

Механическая энергия делится на два вида: кинетическая и потенциальная энергия.

Потенциальная энергия – это энергия, которая определяется взаимным расположением взаимодействующих тел (или же частей одного и того же тела).

Кинетическая энергия – это энергия, которой обладает всякое движущееся тело.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий