Mosfet транзистор что такое

MOSFET ТРАНЗИСТОРЫ ПРОТИВ IGBT

Когда дело доходит до импульсных преобразователей, оба типа транзисторов имеют свои преимущества и недостатки. Но какой из них лучше для данного устройства? В этой статье сравним MOSFET с модулями IGBT чтобы понять, что и где лучше ставить.

Предполагается что в схемах с низким напряжением, низким током, но высокой частотой переключения, предпочтительно использовать полевые транзисторы (MOSFET), а в схемах с высоким напряжением, высоким током, но с низкой частотой – лучше IGBT. Но достаточно ли такой общей классификации? У каждого есть свои дополнительные предпочтения в этом отношении и правда в том, что не существует общего, жесткого стандарта, который позволял бы оценивать параметры данного элемента с точки зрения его использования в импульсных преобразователях. Все зависит от конкретного применения и широкого спектра факторов, таких как частота переключения, размер, стоимость и т. д. Поэтому, вместо того чтобы пытаться решить какой элемент лучше, нужно внимательно изучить различия между этими деталями.

Кратко о MOSFET

MOSFET – это управляемый переключатель с тремя контактами (затвор, сток и исток). Сигнал затвора (управления) подается между затвором и истоком, а контактами переключения являются сток и исток. Сам затвор выполнен из металла и отделен от истока оксидом металла в качестве диэлектрика. Это позволяет снизить энергопотребление и делает этот транзистор отличным выбором для использования в качестве электронного переключателя или усилителя в схеме с общим истоком.

Для правильной работы МОП-транзисторы должны поддерживать положительный температурный коэффициент. Потери во включенном состоянии малы и теоретически сопротивление транзистора в этом состоянии не ограничено – может быть близко к нулю. Кроме того, поскольку МОП-транзисторы могут работать на высоких частотах, они могут работать в устройствах с быстрым переключением и с низкими потерями на переключение.

Существует много различных типов МОП-транзисторов, но наиболее сопоставимыми с IGBT являются мощные MOSFET. Они специально разработаны для работы со значительными уровнями мощности и используются чаще всего только во включенном или выключенном состояниях, что делает их наиболее используемым ключом для низковольтных схем. По сравнению с IGBT, мощные полевые МОП-транзисторы имеют преимущества – более высокую скорость коммутации и более высокую эффективность при работе при низких напряжениях. Более того, такая схема может выдерживать высокое напряжение блокировки и поддерживать высокий ток. Это связано с тем что большинство мощных МОП-структур являются вертикальными (а не плоскими). Номинальное напряжение является прямой функцией легирования и толщины эпитаксиального слоя с примесью N-типа, а ток зависит от ширины канала (чем шире канал, тем выше ток).

Кратко о IGBT

Модуль IGBT также является полностью управляемым коммутатором с тремя контактами (затвор, коллектор и эмиттер). Его управляющий сигнал подается между затвором и эмиттером и нагрузкой между коллектором и эмиттером.

IGBT сочетает в себе простые характеристики управления затвором, как в транзисторе MOSFET, с сильноточным характером биполярного транзистора с низким напряжением насыщения. Это достигается с помощью изолированного полевого транзистора для управляющего входа и биполярного силового транзистора в качестве сильноточного ключа.

Модуль IGBT специально разработан для быстрого включения и выключения. Фактически частота повторения импульсов достигает УЗ диапазона. Эта уникальная способность делает IGBT часто используемыми в усилителях класса D для синтеза сложных сигналов с широтно-импульсной модуляцией и фильтрами нижних частот. Они также используются для генерации импульсов большой мощности в таких областях, как физика элементарных частиц и плазма, а также играют важную роль в современных устройствах – электромобили, электровелосипеды, поезда, холодильники с регулируемой скоростью вращения компрессора, кондиционеры и многое другое.

Сравнение IGBT с MOSFET

Структуры обоих транзисторов очень похожи друг на друга. Что касается протекания тока, важным отличием является добавление слоя подложки P-типа под слой подложки N-типа в структуре модуля IGBT. В этом дополнительном слое дырки вводятся в слой с высоким сопротивлением N-типа, создавая избыток носителей. Это увеличение проводимости в N-слое помогает уменьшить общее напряжение во включенном состоянии в IGBT-модуле. К сожалению, это также блокирует поток электроэнергии в обратном направлении. Поэтому в схему добавлен специальный диод, который расположен параллельно с IGBT чтобы проводить ток в противоположном направлении.

MOSFET может переключаться на более высоких частотах, однако есть два ограничения: время переноса электронов в области дрейфа и время, необходимое для зарядки / разрядки входного затвора и его емкости. Тем не менее эти транзисторы, как правило, достигают более высокой частоты переключения, чем модули IGBT.

Подведем итог

Многие из вышеупомянутых фактов касаются исторической основы обоих устройств. Достижения и технологические прорывы в разработке нового оборудования, а также использование новых материалов, таких как карбид кремния (SiC), привели к значительному улучшению производительности этих радиодеталей за последние годы.

МОП-транзистор:

  • Высокая частота переключения.
  • Лучшие динамические параметры и более низкое энергопотребление драйвера.
  • Более низкая емкость затвора.
  • Более низкое термосопротивление, которое приводит к лучшему рассеиванию мощности.
  • Более короткое время нарастания и спада, что означает способность работать на более высоких частотах.

IGBT модуль:

  • Улучшенная технология производства, которая приводит к снижению затрат.
  • Лучшая устойчивость к перегрузкам.
  • Улучшенная способность распараллеливания схемы.
  • Более быстрое и плавное включение и выключение.
  • Снижение потерь при включении и при переключении.
  • Снижение входной мощности.

В любом случае модули MOSFET и IGBT быстро заменяют большинство старых полупроводниковых и механических устройств, используемых для управления током. Силовые устройства на основе SiC демонстрируют такие преимущества как меньшие потери, меньшие размеры и более высокая эффективность. Подобные инновации будут продолжать расширять пределы использования MOSFET и IGBT транзисторов для схем с более высоким напряжением и большей мощностью.

Форум по обсуждению материала MOSFET ТРАНЗИСТОРЫ ПРОТИВ IGBT

Увеличение мощности интегральных усилителей транзисторами. Рассматривается на примере схем LM3886 и TDA7294.

Простой переходник для корпусов TQFP с самоцентрированием микросхемы, собранный своими руками.

Самодельный 8-канальный PWM MOSFET LED Chaser на микроконтроллере 16F628A.

Принцип работы полевого МОП-транзистора

Содержание статьи

  • Устройство и основные характеристики МОП-транзисторов
  • Отличие униполярных транзисторов от биполярных
  • Типы МОП-транзисторов
  • Принцип работы МОП-транзисторов на примере прибора с n-проводимостью
  • Преимущества и недостатки МОП-транзисторов

Устройство и основные характеристики МОП-транзисторов

МОП-транзистор (MOSFET, «металл-оксид-полупроводник») – полевой транзистор с изолированным затвором (канал разделен с затвором тонким диэлектрическим слоем). Другое название МОП-транзистора – униполярный. Основные области применения таких приборов – выполнение функций электронного переключателя и усилителя электронных сигналов в старой и современной системотехнике.

Практически все типы MOSFET имеют три вывода:

Исток – источник носителей зарядов. Является аналогом эмиттера в биполярном приборе.

Сток. Служит для приема носителей заряда от истока. Аналог коллектора биполярного транзистора.

Затвор. Выполняет функции управляющего электрода. Аналог в биполярном устройстве – база.

Особая категория – транзисторы с несколькими затворами. Они применяются в цифровой технике для организации логических элементов или в качестве ячеек памяти EEPROM.

Основные характеристики униполярных транзисторов, учитываемые при выборе нужного прибора:

в открытом состоянии – внутреннее сопротивление и наибольшее значение допустимого постоянного тока;

в закрытом состоянии – максимально допустимое напряжение прямого типа.

Отличие униполярных транзисторов от биполярных

МОП-транзистор управляется электрополем, которое создается напряжением, приложенным к затвору относительно истока. Полярность прилагаемого напряжения определяется видом канала транзистора (p или n). В отличие униполярных биполярные транзисторы управляются электрическим током. Ток во всех типах этих полупроводников формируется двумя типами зарядов – электронами и дырками.

Полевые (униполярные) транзисторы в отличие от биполярных обладают меньшими собственными шумами в низкочастотном диапазоне. Это свойство обеспечивает их эффективную работу в звукоусилительных устройствах. MOSFET применяют в микросхемах низкочастотных усилителей в автомобильных проигрывателях.

Типы МОП-транзисторов

Униполярные транзисторы делятся на p-канальные или n-канальные. Они могут иметь:

Собственный (встроенный) канал. Без напряжения канал открыт. Для закрытия канала необходимо подать ток определенной полярности.

Индуцированный (инверсный) канал. При отсутствии приложенного электротока он закрыт. Для его открытия прикладывают напряжение нужной полярности. Для n-канальных транзисторов отпирающим является напряжение, положительное относительно истока. Его величина должна быть больше порогового значения, установленного для данного транзистора. Для p-канальных моделей отпирающим будет отрицательное относительно истока напряжение, приложенное к затвору.

Принцип работы МОП-транзисторов на примере прибора с n-проводимостью

В схему униполярного транзистора с изолированным затвором и n-проводимостью входят:

Кремниевая подложка. В подложке n-типа в узлах кристаллической решетки кремния присутствуют отрицательно заряженные атомы и свободные электроны, что достигается введением специальных примесей.

Диэлектрик. Служит для изоляции кремниевой подложки от электрода затвора. В качестве диэлектрика используется оксид кремния.

В большинстве MOSFET исток транзистора подключается к полупроводниковой подложке. Между стоком и истоком формируется «паразитный» диод. Ликвидировать отрицательные последствия появления такого диода и даже использовать в положительных целях позволяет его подключение анодом к истоку в n-канальных полевых транзисторах, анодом к стоку – в p-канальных приборах.

  1. Между затвором и истоком прикладывается плюсовое напряжение к затвору.
  2. Между металлическим выводом затвора и подложкой появляется электрическое поле.
  3. Электрическое поле притягивает к приповерхностному слою диэлектрика свободные электроны, ранее распределенные в кремниевой подложке.
  4. В приповерхностном слое появляется область проводимости (канал) n-типа, состоящая из свободных электронов.
  5. Между выводами стока и истока появляется «мост», проводящий электрический ток.
  6. Проводимость полевого транзистора регулируется величиной внешнего управляющего напряжения. При его снятии проводящий «мостик» исчезнет и прибор закроется.

Аналогично работает МОП-транзистор p-типа. Показанный выше принцип работы является упрощенным. Приборы, используемые на практике в схемотехнике, имеют более сложное устройство и, следовательно, более сложный принцип работы.

Преимущества и недостатки МОП-транзисторов

Униполярные транзисторы имеют довольно широкое распространение в современной системотехнике благодаря ряду преимуществ, среди которых:

  • возможность мгновенного переключения;
  • отсутствие вторичного пробоя;
  • хорошая эффективность работы при низких напряжениях;
  • стабильность при температурных колебаниях;
  • низкий уровень шума при работе;
  • большой коэффициент усиления сигнала;
  • экономичность в плане энергопотребления;
  • меньшее количество технологических операций при построении схем с использованием МОП-транзисторов по сравнению с применением биполярных приборов.

Применение этих приборов ограничивают следующие недостатки:

Важнейший минус – повышенная чувствительность к статическому электричеству. Тонкий слой оксида кремния легко повреждается электростатическими зарядами, поэтому МОП-приборы могут выйти из строя даже при прикосновении к прибору наэлектризованными руками. Современные устройства практически лишены этого недостатка благодаря корпусам, способным минимизировать воздействие статики. Также в них могут интегрироваться защитные устройства по типу стабилитронов.

Появление нестабильности работы при напряжении перегрузки.

Разрушение структуры, начиная от температуры +150 °C. У биполярных приборов критической является температура +200 °C.

Постоянный поиск по получению хороших эксплуатационных свойств высокомощных униполярных транзисторов привел к изобретению гибридного IGBT-транзистора. Эти устройства объединили лучшие качества биполярного и полевых транзисторов.

Силовые MOSFET и IGBT транзисторы, отличия и особенности их применения

Технологии в области силовой электроники все время совершенствуются: реле становятся твердотельными, биполярные транзисторы и тиристоры заменяются все обширнее на полевые транзисторы, новые материалы разрабатываются и применяются в конденсаторах и т. д. — всюду определенно заметна активная технологическая эволюция, которая не прекращается ни на год. С чем же это связано?

Это связано, очевидно, с тем, что в какой-то момент производители оказываются не в состоянии удовлетворить запросы потребителей на возможности и качество силового электронного оборудования: у реле искрят и обгорают контакты, биполярные транзисторы для управления требуют слишком много мощности, силовые блоки занимают неприемлемо много места и т. п. Производители конкурируют между собой — кто первым предложит лучшую альтернативу…?

Так и появились полевые MOSFET транзисторы, благодаря которым управление потоком носителей заряда стало возможным не посредством изменения тока базы, как у биполярных предков, а посредством электрического поля затвора, по сути — просто приложенным к затвору напряжением.

В итоге уже к началу 2000-х доля силовых устройств на MOSFET и IGBT составляла около 30%, в то время как биполярных транзисторов в силовой электронике осталось менее 20%. За последние лет 15 произошел еще более существенный рывок, и биполярные транзисторы в классическом понимании почти полностью уступили место MOSFET и IGBT в сегменте управляемых силовых полупроводниковых ключей.

Проектируя, к примеру, силовой высокочастотный преобразователь, разработчик уже выбирает между MOSFET и IGBT – оба из которых управляются напряжением, прикладываемым к затвору, а вовсе не током, как биполярные транзисторы, и цепи управления получаются в результате более простыми. Давайте, однако рассмотрим особенности этих самых транзисторов, управляемых напряжением затвора.

MOSFET или IGBT

У IGBT (БТИЗ-биполярный транзистор с изолированным затвором) в открытом состоянии рабочий ток проходит через p-n-переход, а у MOSFET – через канал сток-исток, обладающий резистивным характером. Вот и возможности для рассеяния мощности у этих приборов различаются, потери получаются разными: у MOSFET-полевика рассеиваемая мощность будет пропорциональна квадрату тока через канал и сопротивлению канала, в то время как у БТИЗ рассеиваемая мощность окажется пропорциональна напряжению насыщения коллектор-эмиттер и току через канал в первой степени.

Если нам нужно снизить потери на ключе, то потребуется выбрать MOSFET с меньшим сопротивлением канала, однако не стоит забывать, что с ростом температуры полупроводника это сопротивление вырастет и потери на нагрев все же возрастут. А вот у IGBT с ростом температуры напряжение насыщения p-n-перехода наоборот снижается, значит и потери на нагрев уменьшаются.

Но не все так элементарно, как может показаться на взгляд неискушенного в силовой электронике человека. Механизмы определения потерь у IGBT и MOSFET в корне различаются.

Как вы поняли, у MOSFET-транзистора сопротивление канала в проводящем состоянии обуславливает определенные потери мощности на нем, которые по статистике почти в 4 раза превосходят мощность, затрачиваемую на управление затвором.

У IGBT дело обстоит с точностью до наоборот: потери на переходе меньше, а вот затраты энергии на управление — больше. Речь о частотах порядка 60 кГц, и чем выше частота — тем больше потери на управление затвором, особенно применительно к IGBT.

Дело все в том, что в MOSFET неосновные носители заряда не рекомбинируют, как это происходит в IGBT, в составе которого есть полевой MOSFET-транзистор, определяющий скорость открывания, но где база недоступна напрямую, и ускорить процесс при помощи внешних схем нельзя. В итоге динамические характеристики у IGBT ограничены, ограничена и предельная рабочая частота.

Повышая коэффициент передачи и снижая напряжение насыщения — допустим, понизим статические потери, но зато повысим потери при переключении. По этой причине производители IGBT-транзисторов указывают в документации на свои приборы оптимальную частоту и максимальную скорость переключения.

Есть недостаток и у MOSFET. Его внутренний диод отличается конечным временем обратного восстановления, которое так или иначе превышает время восстановления, характерное для внутренних антипараллельных диодов IGBT. В итоге имеем потери включения и токовые перегрузки у MOSFET в полумостовых схемах.

Теперь непосредственно про рассеиваемое тепло. Площадь полупроводниковой IGBT-структуры больше чем у MOSFET, поэтому и рассеиваемая мощность у IGBT больше, вместе с тем температура перехода в процессе работы ключа растет интенсивнее, поэтому важно правильно подобрать радиатор к ключу, грамотно рассчитав поток тепла, приняв в расчет тепловые сопротивления всех границ сборки.

У MOSFET на высоких мощностях также растут потери на нагрев, сильно превосходя потери на управление затвором IGBT. При мощностях выше 300-500Вт и на частотах в районе 20-30 кГц преимущество будет за IGBT-транзисторами.

Вообще, для каждой задачи выбирают свой тип ключа, и есть определенные типовые воззрения на этот аспект. MOSFETы подойдут для работы на частотах выше 20 кГц при напряжениях питания до 300 В — зарядные устройства, импульсные блоки питания, компактные инверторы небольшой мощности и т. д. – подавляющее большинство из них собирают сегодня на MOSFET.

IGBT хорошо работают на частотах до 20 кГц при напряжениях питания 1000 и более вольт — частотные преобразователи, ИБП и т. п. – вот низкочастотный сегмент силовой техники для IGBT-транзисторов.

В промежуточной нише — от 300 до 1000 вольт, на частотах порядка 10 кГц, – подбор полупроводникового ключа подходящей технологии осуществляют сугубо индивидуально, взвешивая все за и против, включая цену, габариты, КПД и другие факторы.

Между тем нельзя однозначно сказать, что в одной типовой ситуации подойдет именно IGBT, а в другой — только MOSFET. Необходимо комплексно подходить к разработке каждого конкретного устройства. Исходя из мощности прибора, режима его работы, предполагаемого теплового режима, приемлемых габаритов, особенностей управления схемой и т.д.

И главное — выбрав ключи нужного типа, разработчику важно точно определить их параметры, ибо в технической документации (в даташите) отнюдь не всегда все точно соответствует реальности. Чем более точно будут известны параметры — тем эффективнее и надежнее получится изделие, независимо от того, идет ли речь об IGBT или о MOSFET.

Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!

Записывайтесь в онлайн-университет от GeekBrains:

Изучить C, механизмы отладки и программирования микроконтроллеров;

Получить опыт работы с реальными проектами, в команде и самостоятельно;

Получить удостоверение и сертификат, подтверждающие полученные знания.

Starter box для первых экспериментов в подарок!

После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.

Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.

Полевой транзистор MOSFET

в Справочник 0 2,778 Просмотров

Транзистор является полупроводниковым электронным компонентом. Мы относим его к активным элементам схемы, поскольку он позволяет преобразовывать электрические сигналы (нелинейно).

Полевой транзистор или MOSFET ( Metal-Oxide Semiconductor Field-Effect Transistor) — полевый транзистор со структурой металл-оксид-полупроводник. Поэтому его часто еще называют просто МОП транзистор.

Производимые по этой технологий транзисторы состоят из трех слоев:

  • Первый слой — это пластина, вырезанная из однородного кристалла кремния или из кремния с примесью германия.
  • Второй по порядку слой — напыление очень тонкой прослойки диэлектрика (изолятора) из диоксида кремния или оксида металла (оксиды алюминия или циркония). Толщина этого слоя составляет, в зависимости от технологии исполнения, около 10 нм, а в лучшем варианте толщина этого слоя может иметь около 1,2 нм. Для сравнения: 5 атомов кремния, расположенных друг над другом вплотную как раз составляют толщину, близкую к 1,2 нм.
  • Третий слой – это слой состоит из хорошо проводящего металла. Чаще всего для этой цели используют золото.

Конструкция такого транзистора схематично представлена ниже:

Следует отметить, что полевые транзисторы бывают двух типов: N-типа и P-типа, почти так же, как и в случае с биполярными транзисторами, которые производятся в вариантах PNP и NPN.

Среди полевых транзисторов гораздо чаще встречается N-тип. Кроме того, существуют полевые транзисторы:

  • с обедненным каналом, то есть такие, которые пропускают через себя слабый ток при отсутствии напряжении на затворе, и чтобы полностью его запереть необходимо подать на затвор обратное смещение в пару вольт;
  • с обогащенным каналом – это такой вид полевых транзисторов, которые при отсутствии напряжения на затворе не проводят ток, а проводят его лишь тогда, когда напряжение, приложенное к затвору, превышает напряжение истока.

Большим преимуществом полевых транзисторов является то, что они управляются напряжением, в отличие от биполярных транзисторов, которые управляются током.

Легче понять принцип их действия полевого транзистора на примере гидравлического крана.

Чтобы управлять потоком жидкости под высоким давлением в большой трубе, требуется мало усилий, чтобы открыть или закрыть кран. Другими словами, при небольшом объеме работы, мы получаем большой эффект. Небольшая сила, которую мы прикладываем к ручке крана управляет намного большей силой воды, которая давит на клапан.

Благодаря этому свойству полевых транзисторов, мы можем управлять токами и напряжениями, которые намного выше, чем те, которые выдает нам, например, микроконтроллер.

Как уже было отмечено ранее, обычный MOSFET, как правило, не проводит ток на пути источник – сток. Чтобы перевести такой транзистор состояние проводимости необходимо подать напряжение между истоком и затвором так, как указано на рисунке ниже.

На следующем рисунке приведена вольт-амперная характеристика транзистора IRF540.

На графике видно, что транзистор начинает проводить тогда, когда напряжение между затвором и истоком приближается к 4В. Однако для полного открытия нужно почти 7 вольт. Это гораздо больше, чем может выдать микроконтроллер на выходе.

В некоторых случаях может быть достаточным ток на уровне 15 мА и напряжением 5В. Но что делать, если это слишком мало? Есть два выхода.

  1. Можно применить специальные МОП-транзисторы с пониженным напряжением затвор – исток, например, BUZ10L.
  2. Как вариант можно использовать дополнительный усилитель для повышения управляющего напряжения.

Независимо от сферы применения, каждый полевой транзистор имеет несколько ключевых параметров, а именно:

  • Допустимое напряжение сток-исток: UDSmax
  • Максимальный ток стока: IDmax
  • Пороговое напряжение открытия: UGSth
  • Сопротивление канала в открытом состоянии: RDSon

Во многих случаях ключевым параметром является RDSon, поскольку косвенно указывает нам на потерю мощности, которая крайне нежелательна.

Для примера возьмем транзистор в корпусе ТО-220 с сопротивлением RDSon = 0,05 Ом и протекающий через этот транзистор ток в 4А.

Давайте посчитаем потери мощности:

  • UDS=0,05Ом х 4A=0,2В
  • P=0,2В х 4A=0,8Вт

Мощность потерь, которую способен рассеивать транзистор в корпусе ТО-220 составляет чуть более 1 Вт, так что в этом случае можно обойтись без радиатора. Однако, уже для тока 10А потери составят 5Вт, так что без радиатора никак не обойтись.

Следовательно, чем меньше RDSon, тем лучше. Поэтому при выборе MOSFET транзистора для конкретного применения следует всегда принимать во внимание этот параметр.

На практике с увеличением допустимого напряжения UDSmax растет сопротивление исток-сток. По этой причине не следует выбирать транзисторы с большим, чем это требуется UDSmax.

Mosfet транзистор что такое

MOSFET
1)MOSFET это полевик или нет?
2)Зачем в них диодик рисуют внутри?
3)Они работают только в режиме открыт-закрыт или нет? можно ли ими чего-то усиливать? Я так понял что специально их используют только как альтернативу реле.
4)Что значит “затвор управляется логическим уровнем”? Как вообще им управлять? 5 вольт на затвор – открыт, 0В – закрыт? (для n-канала)
Или нужны какие-то ограничительные резисторы? Затвор описан как небольшой конденсатор, значит ограничительные резисторы будут тормозить переход?
5)Что лучше n или p канал?
6)Что за спец. микросхемы для затворов используются? Что за “правильные сигналы” они выдают на затвор? Что эти микросхемы делают, нужны ли они? Как они называются, посмотреть даташиты чтоли.

IGBT
1)В чем отличие IGBT от обычных транзисторов?
2)нужны ли опять эти спецмикросхемы-драйверы?

Тиристоры
Я тут нашел один тиристор bt137, что за зверь?
Что вообще такое тиристоры?))
Для чего и как они используются?
Как подключить его к МК?

У меня тут в схеме он вроде нагрузку открывает-закрывает.

Общее
1)Когда использовать MOSFET, кодга IGBT, когда тиристоры?
На каких частотах всё это нормально работает?
Где с ними можно использовать только постоянный ток, где только переменный?

Уж простите за объём.

JLCPCB, всего $2 за прототип печатной платы! Цвет – любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

за разморозку темы спасибо. форум я прошерстил но инфы пока мало.

за книжку большое спасибо – где б вот ещё скачать бы:) интернет жадный не дает)

Продолжая развивать программу доступности коммутационных компонентов KLS, Компэл расширяет складской ассортимент кнопочных переключателей, в том числе с функцией OFF-(ON), предназначенных для коммутации сигнальных цепей как постоянного, так и переменного токов. Кнопочные переключатели представлены в стандартном и антивандальном исполнениях, что позволяет их использовать для включения/выключения приборов промышленного контроля, СКУД, систем управления освещением, медицинского оборудования и других.

В программе вебинара: технология Silent Switcher® – сочетание высокого КПД и сверхмалого уровня ЭМИ, технология uModule® – высокоинтегрированные решения для источников питания, микро- и нанопотребляющие DC/DC-преобразователи, решения для резервного питания, цифровое управление системой питания (PSM), безоптронные изолированные обратноходовые преобразователи. В практической части вебинара будут продемонстрированы примеры работы с инструментами Analog Devices для проектирования источников питания.

_________________
если рассматривать человека снизу, покажется, что мозг у него глубоко в жопе
при взгляде на многих сверху ничего не меняется.

MOSFET
1)MOSFET это полевик или нет?

MOSFET это сокращение от Metal-Oxide-Semiconductor Field Effect Transistor.
Metal – металл
Oxide – окисел
Semiconductor – полупроводник
Field – поле
Effect – воздействие, эффект
Transistor – транзистор.
Таким образом это полевой транзистор структуры металл-окисел-полупроводник с изолированным затвором. По русски – МОП транзистор. Последнее время MOSFET-ами обзывают только мощные полевики, которые работают как ключи, хотя на самом деле такую же структуру имеют и высокочастотные маломощные полевики, в том числе, и двухзатворные для смесителей радиоприёмников.

2)Зачем в них диодик рисуют внутри?

Потому, что диодик там есть. Он получается автоматически при изготовлении транзистора – такой уж технологический процесс.

3)Они работают только в режиме открыт-закрыт или нет? можно ли ими чего-то усиливать? Я так понял что специально их используют только как альтернативу реле.

Можно использовать и в линейном режиме. Почему бы и нет? Но лучше их использовать как ключ из-за очень маленького сопротивления канала в открытом состоянии (единицы – сотни миллиом).

4)Что значит “затвор управляется логическим уровнем”? Это значит, что транзистор гарантированно откроется, если ему на затвор подать напряжение больше 3,2 вольта – напряжение логического уровня для TTL логики.

Как вообще им управлять? 5 вольт на затвор – открыт, 0В – закрыт? (для n-канала)

Примерно так. Если, конечно, исток сидит на земле. Однако, если явно не оговорено, что транзистор “управляется логическим уровнем”, то 5 вольт может не хватить, чтобы транзистор открылся полностью. В таких случаях между затвором и истоком надо подавать обычно не меньше 7-8 вольт.

Или нужны какие-то ограничительные резисторы? Затвор описан как небольшой конденсатор, значит ограничительные резисторы будут тормозить переход?

К сожалению, мощные MOSFET транзисторы пока что невозможно изготовить с маленькой ёмкостью затвора. Обычно эта ёмкость составляет около тысячи пикофарад и даже больше.
Чтобы транзистор включился, эту ёмкость надо зарядить от нуля до нескольких вольт. (Или разрядить, чтобы выключился). Именно этим определяется быстродействие транзистора и отсюда же возникают соответствующие проблемы. Удастся зарядить эту ёмкость за 1 наносекунду – транзистор включится за наносекунду! Только фиг так получится – потребуется слишком большой ток! Резисторы в затвор ставятся как раз для ограничения тока перезаряда и конечно же они будут снижать быстродействие, но это лучше, чем сжечь каскад, который раскачивает транзисторы. Если частота переключения сотни герц, то резисторы не нужны. Ну а если десятки килогерц, то нужны обязательно.

5)Что лучше n или p канал?

В силу определённых обстоятельств, связанных с физикой и особенностями технологического процесса, при прочих равных условиях, у транзисторов с n-каналом, получаются лучшие характеристики.

6)Что за спец. микросхемы для затворов используются? Что за “правильные сигналы” они выдают на затвор? Что эти микросхемы делают, нужны ли они? Как они называются, посмотреть даташиты чтоли.

Микросхемы нужны, когда используется мостовая или просто двухтактная схема включения транзисторов и возможна ситуация, когда могут быть открыты оба транзистора одновременно и в верхнем и в нижнем плече – тогда возникнет сквозной ток. Микросхема как раз и формирует “правильные сигналы”, чтобы этого не призошло. Кроме того, микросхема может работать как ШИМ регулятор. Как они называются – посмотрите схемы конкретных устройств, которых полно в интернете.

IGBT
1)В чем отличие IGBT от обычных транзисторов?

IGBT это гибрид полевого и биполярного транзисторов. Вход – полевой транзистор с изолированным затвором, выход – мощный биполярный транзистор.

2)нужны ли опять эти спецмикросхемы-драйверы?
Нужны. Кроме обычных проблем с включением-выключением у IGBT есть ещё так называемый “эффект защёлкивания” – когда IGBT включается и фиг его выключишь по входу. Насколько я понял, специальные микросхемы помогают избежать такой ситуации.

Тиристоры
Я тут нашел один тиристор bt137, что за зверь?
Что вообще такое тиристоры?))
Для чего и как они используются?
Как подключить его к МК?

Тиристор – четырёхслойная структура: n-p-n-p в которой три p-n перехода, в отличие от транзистора (два p-n перехода) и диода (один p-n переход). Эта четырёхслойная структура подключается таким образом, что наружу из корпуса торчат три вывода: анод, катод и
управляющий электрод. Нагрузка подключается одним концом к аноду, а другим к плюсу источника питания. Катод подключается к минусу источника питания. В таком состоянии тиристор закрыт и ток через него и через нагрузку не течёт. Если теперь в цепь управляющий электрод – катод подать небольшой короткий импульс тока, то тиристор включится и через него потечёт ток, определяемый только сопротивлением нагрузки. При этом падение напряжения на открытом тиристоре примерно 1 вольт. Ток через тиристор может быть намного больше, чем ток через управляющий электрод, который его включил. Тиристор останется во включённом состоянии, даже если ток через управляющий электрод прекратиться, и будет находиться во включённом состоянии сколь угодно долго, пока есть анодное напряжение и есть анодный ток.
Выключить тиристор через управляющий электрод, как правило, нельзя, хотя в природе бывают запираемые тиристоры. Тиристор выключается только по выходу, т.е., чтобы он выключился, надо уменьшить анодное напряжение почти до нуля, чтобы анодный ток стал меньше некоторого значения, которое называется током удержания.
Эти свойства позволяют применять тиристоры на переменном токе. Тиристор включают в диагональ диодного моста, а вдругую диагональ нагрузку и сеть переменного тока. На тиристоре при этом будет пульсирующее напряжение. Тиристор можно включить в любой
момент, а выключаться он будет автоматически в конце каждого полупериода.
Существуют также симметричные тиристоры – симисторы или триаки. Для работы на переменном токе им диодный мост не требуется.
Тиристоры удобно подключать к МК через оптроны. Причём существуют специальные оптроны, которые включают тиристор в момент перехода напряжения через ноль, чтобы не создавать
коммутационных помех.

Общее
1)Когда использовать MOSFET, кодга IGBT, когда тиристоры?
На каких частотах всё это нормально работает?
Где с ними можно использовать только постоянный ток, где только переменный?

MOSFET и IGBT можно использовать и на постоянном и на переменном токе, а тиристоры только на переменном.

При токах нагрузки до десятков ампер выгоднее использовать MOSFET. При нагрузках в десятки и сотни ампер выгоднее IGBT. Связано это с тем, что у MOSFET сопротивление канала величина постоянная и не зависит от тока. Потери на ключе в виде тепла равны
КВАДРАТУ тока, умноженному на сопротивление канала. Т.е. при возрастании тока вдвое, потери возрастают в четыре раза! При относительно небольших значениях тока с потерями можно мириться, но при больших токах – катастрофа. Что касается IGBT, то на выходе у них биполярные транзисторы, у которых напряжение насыщения хотя и зависит от тока, но не так катастрофически. Потери от тока зависят почти линейно.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий