Можно ли включать конденсатор в цепь постоянного тока

Занимательная радиотехника. Проходит ли ток через конденсатор?

Проходит электрический ток через конденсатор или не проходит? Повседневный радиолюбительский опыт убедительно говорит, что постоянный ток не проходит, а переменный проходит.

Это легко подтвердить опытами. Можно зажечь лампочку, присоединив ее к сети переменного тока через конденсатор. Громкоговоритель или телефонные трубки будут продолжать работать, если их присоединить к приемнику не непосредственно, а через конденсатор.

Конденсатор представляет собой две или несколько металлических пластин, разделенных диэлектриком. Этим диэлектриком чаще всего бывает слюда, воздух или керамика, являющиеся наилучшими изоляторами. Вполне естественно, что постоянный ток не может пройти через такой изолятор. Но почему же проходит через него переменный ток? Это кажется тем более странным, что такая же самая керамика в виде, например, фарфоровых роликов прекрасно изолирует провода переменного тока, а слюда прекрасно выполняет функции изолятора в паяльник ах, электроутюгах и других нагревательных приборах, исправно работающих от переменного тока.

Посредством некоторых опытов мы могли бы «доказать» еще более странный факт: если в конденсаторе заменить диэлектрик со сравнительно плохими изоляционными свойствами другим диэлектриком, который является лучшим изолятором, то свойства конденсатора изменятся так, что прохождение переменного тока через конденсатор будет не затруднено, а, наоборот, облегчено. Например, если включить лампочку в цепь переменного тока через конденсатор с бумажным диэлектриком и затем заменить бумагу таким прекрасным изолятором; как стекло или фарфор такой же толщины, то лампочка начнет гореть ярче. Подобный опыт позволит прийти к заключению, что переменный ток не только проходят через конденсатор, но что он к тому же проходит тем легче, чем лучшим изолятором является его диэлектрик.

Однако, несмотря на всю кажущуюся убедительность подобных опытов, электрический ток — ни постоянный, ни переменный — через конденсатор не проходит. Диэлектрик, разделяющий пластины конденсатора, служит надежной преградой на пути тока, каким бы он ни был — переменным или постоянным. Но это еще не означает, что тока не будет и во всей той цепи, в которую включен конденсатор.

Конденсатор обладает определенным физическим свойством, которое мы называем емкостью. Это свойство состоит в способности накапливать на обкладках электрические заряды. Источник электрического тока можно грубо уподобить насосу, перекачивающему в цепи электрические заряды. Если ток постоянный, то электрические заряды перекачиваются все время в одну сторону.

Как же будет вести себя в цепи постоянного тока конденсатор?

Наш «электрический насос» будет качать заряды на одну его обкладку и откачивать их с другой обкладки. Способность конденсатора удерживать на своих обкладках (пластинах) определенную разницу количества зарядов и называется его емкостью. Чем больше емкость конденсатора, тем больше электрических зарядов может быть на одной обкладке по сравнению с другой.

В момент включения тока конденсатор не заряжен — количество зарядов на его обкладках одинаково. Но вот ток включен. «Электрический насос» заработал. Он погнал заряды на одну обкладку и начал откачивать их с другой. Раз в цепи началось движение зарядов, значит в ней начал протекать ток. Ток будет течь до тех пор, пока конденсатор не зарядится полностью. По достижении этого предела ток прекратится.

Следовательно, если в цепи постоянного тока есть конденсатор, то после ее замыкания ток в ней будет течь столько времени сколько нужно для полного заряда конденсатора.

Если сопротивление цепи, через которую заряжается конденсатор, сравнительно невелико, то время заряда оказывается очень коротким: оно длится ничтожные доли секунды, после чего течение тока прекращается.

Иное дело в цепи переменного тока. В этой цепи «насос» перекачивает электрические заряды то в одну, то в другую сторону. Едва создав на одной обкладке конденсатора превышение количества зарядов по сравнению с количеством их на другой обкладке, насос начинает перекачивать их в обратно направлении. Заряды будут циркулировать в цепи непрерывно, значит в ней, несмотря на присутствие не проводящего ток конденсатора, будет существовать ток — ток заряда и разряда конденсатора.

От чего будет зависеть величина этого тока?

Под величиной тока мы понимаем количество электрических зарядов, протекающих в единицу времени через поперечное сечение проводника. Чем, больше емкость конденсатора, тем больше зарядов потребуется для его «заполнения», значит тем сильнее будет ток в цепи. Емкость конденсатора зависит от ве-, личины пластин, расстояния между ними и рода разделяющего их диэлектрика, его диэлектрической проницаемости. У фарфора диэлектрическая проницаемсклъ больше, чем у бумаги, поэтому при замене в конденсаторе бумаги фарфором ток в цепи увеличивается, хотя фарфор является лучшим изолятором, чем бумага.

Величина тока зависит также от его частоты. Чем выше частота, тем больше будет ток. Легко понять, почему это происходит, представив себе, что мы наполняем водой через трубку сосуд емкостью, например, 1 л и затем выкачиваем ее оттуда. Если этот процесс будет повторяться 1 раз в секунду, то по трубке в секунду будет проходить 2 л воды: 1 л в одну сторону и 1 л — в другую. Но если мы удвоим частоту^ процесса: будем наполнять и опорожнять сосуд 2 раза в секунду, то по трубке в секунду пройдет уже 4 л воды — увеличение частоты процесса при неизменной емкости сосуда привело к соответствующему увеличению количества воды, протекающей по трубке.

Из всего сказанного можно сделать следующие выводк: электрический ток — ни постоянный, ни переменный — через конденсатор не проходит. Но в цепи, соединяющей источник переменного тока с конденсатором, течет ток заряда и разряда этого конденсатора. Чем больше емкость конденсатора и выше частота тока, тем сильнее будет этот ток.

Эта особенность переменного тока чрезвычайно широко используется в радиотехнике. На ней основано и излучение радиоволн. Для этого мы возбуждаем в передающей антенне высокочастотный переменный ток. Но почему же ток течет в антенне, ведь она не представляет собой замкнутую цепь? Он течет потому, что между проводами антенны и противовеса или землей существует емкость. Ток в антенне представляет собой ток заряда и разряда этой емкости, этого конденсатора.

  • 68
  • 1
  • 2
  • 3
  • 4
  • 5

Л. В. Кубаркин и Е. А. Левитин, Занимательная радиотехника, Госэнергоиздат, 1956.

Особенности конденсатора переменного и постоянного тока

Конденсатор в цепи переменного тока или постоянного, который нередко называется попросту кондёром, состоит из пары обкладок, покрытых слоем изоляции. Если на это устройство будет подаваться ток, оно будет получать заряд и сохранять его в себе некоторое время. Емкость его во многом зависит от промежутка между обкладками.

  • Принцип работы
  • Описание конденсатора постоянного тока
  • Особенности устройства с переменным электротоком

Принцип работы

Конденсатор может быть выполнен по-разному, но суть работы и основные его элементы остаются неизменными в любом случае. Чтобы понять принцип работы, необходимо рассмотреть самую простую его модель.

У простейшего устройства имеются две обкладки: одна из них заряжена положительно, другая — наоборот, отрицательно. Заряды эти хоть и противоположны, но равны. Они притягиваются с определенной силой, которая зависит от расстояния. Чем ближе друг к другу располагаются обкладки, тем больше между ними сила притяжения. Благодаря этому притяжению заряженное устройство не разряжается.

Однако достаточно проложить какой-либо проводник между двумя обкладками и устройство мгновенно разрядится. Все электроны от отрицательно заряженной обкладки сразу же перейдут на положительно заряженную, в результате чего заряд уравняется. Иными словами, чтобы снять заряд с конденсатора, необходимо лишь замкнуть две его обкладки.

Описание конденсатора постоянного тока

Электрические цепи бывают двух видов — постоянными или переменными. Все зависит от того, как в них протекает электроток. Устройства в этих цепях ведут себя по-разному.

Чтобы рассмотреть, как будет вести себя конденсатор в цепи постоянного тока, нужно:

  1. Взять блок питания постоянного напряжения и определить значение напряжения. Например, «12 Вольт».
  2. Установить лампочку, рассчитанную на такое же напряжение.
  3. В сеть установить конденсатор.

Никакого эффекта не будет: лампочка так и не засветится, а если убрать из цепи конденсатор, то свет появится. Если устройство будет включено в сеть переменного тока, то она попросту не будет замыкаться, поэтому и никакой электроток здесь пройти не сможет. Постоянный — не способен проходить по сети, в которую включен конденсатор. Всему виной обкладки этого устройства, а точнее, диэлектрик, который разделяет эти обкладки.

Убедиться в отсутствии напряжения в сети постоянного электротока можно и другими способами. Подключать к сети можно, что угодно, главное, чтобы в цепь был включен источник постоянного электротока. Элементом же, который будет сигнализировать об отсутствии напряжения в сети или, наоборот, о его присутствии, также может быть любой электроприбор. Лучше всего для этих целей использовать лампочку: она будет светиться, если электроток есть, и не будет гореть при отсутствии напряжения в сети.

Можно сделать вывод, что конденсатор не способен проводить через себя постоянный ток, однако это заключение неправильное. На самом деле электроток сразу после подачи напряжения появляется, но мгновенно и исчезает. В этом случае он проходит в течение лишь нескольких долей секунды. Точная продолжительность зависит от того, насколько емким является устройство, но это, как правило, в расчет не берется.

Особенности устройства с переменным электротоком

Чтобы определить, будет ли проходить переменный электроток, необходимо устройство подключить в соответствующую цепь. Основным источником электроэнергии в таком случае должно являться устройство, генерирующее именно переменный электроток.

Постоянный электрический ток не идет через конденсатор, а вот переменный, наоборот, протекает, причем устройство постоянно оказывает сопротивление проходящему через него электротоку. Величина этого сопротивления связана с частотой. Зависимость здесь обратно пропорциональная: чем ниже частота, тем выше сопротивление. Если к источнику переменного электротока подключить кондер, то наибольшее значение напряжения здесь будет зависеть от силы тока.

Убедиться в том, что конденсатор может проводить переменный электроток, наглядно поможет простейшая цепь, составленная из:

  • Источника тока. Он должен быть переменным.
  • Конденсатора.
  • Потребителя электротока. Лучше всего использовать лампу.

Однако стоит помнить об одном: лампа загорится лишь в том случае, если устройство имеет довольно большую емкость. Переменный ток оказывает на конденсатор такое влияние, что устройство начинает заряжаться и разряжаться. А ток, который проходит по сети во время перезарядки, повышает температуру нити накаливания лампы. В результате она и светится.

От емкости устройства, подключенного к сети переменного тока, во многом зависит электроток перезарядки. Зависимость прямо пропорциональная: чем большей емкостью обладает, тем больше величина, характеризующая силу тока перезарядки. Чтобы в этом убедиться, достаточно лишь повысить емкость. Сразу после этого лампа начнет светиться ярче, так как нити ее будут больше накалены. Как видно, конденсатор, который выступает в качестве одного из элементов цепи переменного тока, ведет себя иначе, нежели постоянный резистор.

При подключении конденсатора переменного тока начинают происходить более сложные процессы. Лучше их понять поможет такой инструмент, как вектор. Главная идея вектора в этом случае будет заключаться в том, что можно представить значение изменяющегося во времени сигнала как произведение комплексного сигнала, который является функцией оси, отображающей время и комплексного числа, которое, наоборот, не связано со временем.

Поскольку векторы представляются некоторой величиной и некоторым углом, начертить их можно в виде стрелки, которая вращается в координатной плоскости. Напряжение на устройстве немного отстает от тока, а оба вектора, которыми они обозначаются, вращаются на плоскости против часовых стрелок.

Конденсатор в сети переменного тока может периодически перезаряжаться: он то приобретает какой-то заряд, то, наоборот, отдает его. Это означает, что кондер и источник переменного электротока в сети постоянно обмениваются друг с другом электрической энергией. Такой вид электроэнергии в электротехнике носит название реактивной.

Конденсатор не позволяет проходить по сети постоянному электротоку. В таком случае он будет иметь сопротивление, приравнивающееся к бесконечности. Переменный же электроток способен проходить через это устройство. В этом случае сопротивление имеет конечное значение.

Конденсаторы для «чайников»

Если вы регулярно занимаетесь созданием электрических схем, вы наверняка использовали конденсаторы. Это стандартный компонент схем, такой же, как сопротивление, который вы просто берёте с полки без раздумий. Мы используем конденсаторы для сглаживания пульсаций напряжения/тока, для согласования нагрузок, в качестве источника энергии для маломощных устройств, и других применений.

Но конденсатор – это не просто пузырёк с двумя проводочками и парой параметров – рабочее напряжение и ёмкость. Существует огромный массив технологий и материалов с разными свойствами, применяемых для создания конденсаторов. И хотя в большинстве случаев для любой задачи сгодится практически любой конденсатор подходящей ёмкости, хорошее понимание работы этих устройств может помочь вам выбрать не просто нечто подходящее, а подходящее наилучшим образом. Если у вас когда-нибудь была проблема с температурной стабильностью или задача поиска источника дополнительных шумов – вы оцените информацию из этой статьи.

Начнём с простого

Лучше начать с простого и описать основные принципы работы конденсаторов, прежде чем переходить к настоящим устройствам. Идеальный конденсатор состоит из двух проводящих пластинок, разделённых диэлектриком. Заряд собирается на пластинах, но не может перетекать между ними – диэлектрик обладает изолирующими свойствами. Так конденсатор накапливает заряд.

Ёмкость измеряется в фарадах: конденсатор в один фарад выдаёт напряжение в один вольт, если в нём находится заряд в один кулон. Как и у многих других единиц системы СИ, у неё непрактичный размер, поэтому, если не брать в расчёт суперконденсаторы, о которых мы здесь говорить не будем, вы скорее всего встретитесь с микро-, нано- и пикофарадами. Ёмкость любого конденсатора можно вывести из его размеров и свойств диэлектрика – если интересно, формулу для этого можно посмотреть в Википедии. Запоминать её не нужно, если только вы не готовитесь к экзамену – но в ней содержится один полезный факт. Ёмкость пропорциональна диэлектрической проницаемости εr использованного диэлектрика, что в результате привело к появлению в продаже различных конденсаторов, использующих разные диэлектрические материалы для достижения больших ёмкостей или улучшения характеристик напряжения.


Паразитные индуктивность и сопротивление реального конденсатора

С использованием диэлектриков в конденсаторах есть одна проблемка, наряду с тем, что диэлектрик с нужными характеристиками обладает неприятными побочными эффектами. У всех конденсаторов есть небольшие паразитные сопротивление и индуктивность, которые иногда могут влиять на его работу. Электрические постоянные меняются от температуры и напряжения, пьезоэлектричества или шума. Некоторые конденсаторы стоят слишком дорого, у некоторых существуют состояния отказа. И вот мы подошли к основной части статьи, в которой расскажем о разных типах конденсаторов, и об их свойствах, полезных и вредных. Мы не будем освещать все возможные технологии, хотя большинство обычных мы опишем.

Алюминиевые электролитические

Алюминиевые электролитические конденсаторы используют анодно-оксидированный слой на алюминиевом листе в качестве одной пластины-диэлектрика, и электролит из электрохимической ячейки в качестве другой пластины. Наличие электрохимической ячейки делает их полярными, то есть напряжение постоянного тока должно прикладываться в одном направлении, и анодированная пластина должна быть анодом, или плюсом.

На практике их пластины выполнены в виде сэндвича из алюминиевой фольги, завёрнутой в цилиндр и расположенной в алюминиевой банке. Рабочее напряжение зависит от глубины анодированного слоя.

У электролитических конденсаторов наибольшая среди распространённых ёмкость, от 0,1 до тысяч мкФ. Из-за плотной упаковки электрохимической ячейки у них наблюдается большая эквивалентная последовательная индуктивность (equivalent series inductance, ESI, или эффективная индуктивность), из-за чего их нельзя использовать на высоких частотах. Обычно они используются для сглаживания питания и развязывания, а также связывания на аудиочастотах.

Танталовые электролитические


Танталовый конденсатор поверхностного размещения

Танталовые электролитические конденсаторы изготавливаются в виде спечённого танталового анода с большой площадью поверхности, на которой выращивается толстый слой оксида, а затем в качестве катода размещается электролит из диоксида марганца. Комбинация большой площади поверхности и диэлектрических свойств оксида тантала приводит к высокой ёмкости в пересчёте на объём. В результате такие конденсаторы выходят гораздо меньше алюминиевых конденсаторов сравнимой ёмкости. Как и у последних, у танталовых конденсаторов есть полярность, поэтому постоянный ток должен идти в строго одном направлении.

Их доступная ёмкостью варьируется от 0,1 до нескольких сотен мкФ. У них гораздо меньше сопротивление утечки и эквивалентное последовательное сопротивление (ESR), в связи с чем они используются в тестировании, измерительных приборах и высококачественных аудиоустройствах – там, где эти свойства полезны.

В случае танталовых конденсаторов необходимо особенно следить за тем, чтобы они не вышли из строя — бывает, что в таком случае они загораются. Аморфный оксид тантала – хороший диэлектрик, а в кристаллической форме он становится хорошим проводником. Неправильное использование танталового конденсатора – например, подача слишком большого пускового тока может привести к переходу диэлектрика в другую форму, что увеличит проходящий через него ток. Правда, репутация, связанная с возгораниями, появилась у более ранних поколений танталовых конденсаторов, и улучшенные методы производства привели к созданию более надёжной продукции.

Полимерные плёнки

Целое семейство конденсаторов использует полимерные плёнки в качестве диэлектриков, а плёнка либо находится между витыми или перемежающимися слоями металлической фольги, либо имеет металлизированный слой на поверхности. Их рабочее напряжение может доходить до 1000 В, но высокими ёмкостями они не обладают – это обычно от 100 пФ до единиц мкФ. У каждого вида плёнки есть свои плюсы и минусы, но в целом всё семейство отличается более низкими ёмкостью и индуктивностью, чем у электролитических. Посему они используются в высокочастотных устройствах и для развязывания в электрически шумных системах, а также в системах общего назначения.

Полипропиленовые конденсаторы используются в схемах, требующих хорошей тепловой и частотной стабильности. Также они используются в системах питания, для подавления ЭМП, в системах, использующих переменные токи высокого напряжения.

Полиэстеровые конденсаторы, хотя и не обладают такими температурными и частотными характеристиками, получаются дешёвыми и выдерживают большие температуры при пайке для поверхностного монтажа. В связи с этим они используются в схемах, предназначенных для использования в некритичных приложениях.

Полиэтилен-нафталатовые конденсаторы. Не обладают стабильными температурными и частотными характеристиками, но могут выдерживать гораздо большие температуры и напряжения по сравнению с полиэстеровыми.

Полиэтилен-сульфидовые конденсаторы обладают температурными и частотными характеристиками полипропиленовых, и в дополнение выдерживают высокие температуры.

В старом оборудовании можно наткнуться на поликарбонатные и полистиреновые конденсаторы, но сейчас они уже не используются.

Керамика

История керамических конденсаторов довольно длинная – они использовались с первых десятилетий прошлого века и по сей день. Ранние конденсаторы представляли собою один слой керамики, металлизированной с обеих сторон. Более поздние бывают и многослойными, где пластины с металлизацией и керамика перемежаются. В зависимости от диэлектрика их ёмкости варьируются от 1 пФ до десятков мкФ, а напряжения достигают киловольт. Во всех отраслях электроники, где требуется малая ёмкость, можно встретить как однослойные керамические диски, так и многослойные пакетные конденсаторы поверхностного монтажа.

Проще всего классифицировать керамические конденсаторы по диэлектрикам, поскольку именно они придают конденсатором все свойства. Диэлектрики классифицируют по трёхбуквенным кодам, где зашифрована их рабочая температура и стабильность.

C0G лучшая стабильность в ёмкости по отношению к температуре, частоте и напряжению. Используются в высокочастотных схемах и других контурах высокого быстродействия.

X7R не обладают такими хорошими характеристиками по температуре и напряжению, посему используются в менее критичных случаях. Обычно это развязывание и различные универсальные приложения.

Y5V обладают гораздо большей ёмкостью, но характеристики температуры и напряжения у них ещё ниже. Также используются для развязывания и в различных универсальных приложениях.

Поскольку керамика часто обладает и пьезоэлектрическими свойствами, некоторые керамические конденсаторы демонстрируют и микрофонный эффект. Если вы работали с высокими напряжениями и частотами в аудиодиапазоне, например, в случае ламповых усилителей или электростатики, вы могли услышать, как «поют» конденсаторы. Если вы использовали пьезоэлектрический конденсатор для обеспечения частотной стабилизации, вы могли обнаружить, что его звук модулируется вибрацией его окружения.

Как мы уже упоминали, статья не ставит целью охватить все технологии конденсаторов. Взглянув в каталог электроники вы обнаружите, что некоторые технологии, имеющиеся в наличии, здесь не освещены. Некоторые предложения из каталогов уже устарели, или же имеют такую узкую нишу, что с ними чаще всего и не встретишься. Мы надеялись лишь развеять некоторые тайны по поводу популярных моделей конденсаторов, и помочь вам в выборе подходящих компонентов при разработке собственных устройств. Если мы разогрели ваш аппетит, вы можете изучить нашу статью по катушкам индуктивности.

Об обнаруженных вами неточностях и ошибках прошу писать через личные сообщения сайта. Спасибо.

35. Электродинамика Читать 0 мин.

35.441. Цепи

Через конденсатор постоянный ток не течёт.

Напряжение на параллельных участках цепи одинаково.

В системе отключенных конденсаторов заряд всегда остаётся постоянным. Напряжение и ёмкость может меняться.

Выделившееся количество теплоты равно разности начальной и конечной энергии:

― начальная энергия системы [Дж];

Ек ― конечная энергия системы [Дж].

Начальные и конечные энергии определяются энергиями конденсаторов и катушек индуктивности входящих в цепь.

После установления равновесия, напряжение есть только на конденсаторах, не подключенных параллельно к резисторам.

Конденсатор в цепи постоянного тока

Плоский конденсатор представляет собой пластинки, на которых может скапливаться заряд. Между пластинками находится пространство, заполненное диэлектриком (или воздухом в роли диэлектрика). Поскольку диэлектрики ― вещества, плохо проводящие ток, от одной пластины конденсатора через слой диэлектрика на другую пластину заряд перейти не может, а значит, через конденсатор ток не проходит. Если на участке цепи находится такой конденсатор ― этот участок «заблокирован», тока в нем нет.

Если на участке цепи находится конденсатор не заряженный, или заряженный частично, а цепь подключают к источнику тока ― на обкладках конденсатора начинает скапливаться заряд. Это означает, что на этом участке цепи до конденсатора есть ток ― до тех пор, пока конденсатор не заряжен полностью.

Если цепь от источника тока отключить, и в ней есть заряженный конденсатор ― конденсатор начинает разряжаться. Заряды с одной обкладки конденсатора пытаются перейти на другую, по «длинному пути» ― через всю цепь, создавая, таким образом, ток. Ток в такой цепи будет до тех пор, пока конденсатор не разрядится.

Пример: Пусть в цепи есть два резистора с сопротивлениями R1 и R2, источник ЭДС ε, и конденсатор емкостью C:

Конденсатор C полностью заряжен. В этом случае токи в цепи не проходят через участок цепи FG ― его словно нет в цепи, и в расчетах параметров цепи он не учитывается. Ток считается выходящим из положительно заряженной клеммы источника ЭДС (тонкая и длинная) к входящим в отрицательно заряженную клемму (жирная короткая черта):

Конденсатор разряжен или заряжен не док конца. В этом случае конденсатор только заряжается, и ток в цепи через точку F проходит – вплоть до обкладки конденсатора – но дальше, в точку G ток не проходит.

Конденсатор заряжен, но от источника ЭДС цепь отключена. В этом случае ток идет через всю цепь ― пока конденсатор может служить источником зарядов и пока полностью не разрядится. Когда конденсатор разрядится ― ток в цепи прекратится.

Напряжения на всех параллельных участках цепи равны ― это основное свойство параллельного подключения. Вне зависимости от того, находится на ветви резистор, или конденсатор. Таким образом, во всех случаях для примера выше, напряжение на конденсаторе C равно напряжению на резисторе R1, и равно напряжению на резисторе R2. Благодаря этому свойству, зная, например, энергию, скопившуюся на заряженном конденсаторе, или его заряд, можно вычислить напряжение на резисторах.

Заряженный конденсатор, отключенный от цепи. У заряженного конденсатора на обкладках находится определенное количество заряда. Если конденсатор отключить от цепи ― заряду некуда переместиться, и он остается на конденсаторе неизменным. Получить дополнительный заряд, если он заряжен не до конца, конденсатору тоже неоткуда. Заряд конденсатора, отключенного от цепи, постоянен.

Электроемкость конденсатора ― это его физико-геометрическая характеристика, показывающая, как много заряда он может скопить. Электроемкость конденсатор не зависит ни от заряда на его обкладках, ни от напряжения в цепи.

Электроемкость конденсатора равна C = $frac = frac$ , где

C ― электроемкость конденсатора, [Ф];

(φ2 – φ1) ― разность потенциалов на обкладках конденсатора, [В];

U ― напряжение на обкладках конденсатора [В].

Электроемкость плоского конденсатора зависит от размеров его пластин, расстояния между ними, а также типа диэлектрика, который заполняет пространство между пластинами.

Электроемкость плоского конденсатора равна C = $frac$ , где

C ― ёмкость конденсатора [Ф];

ε ― диэлектрическая проницаемость;

ε0 ― электрическая постоянная;

S ― площадь обкладок конденсатора [м2];

d ― расстояние между обкладками [м].

В электрической цепи за счет сопротивления, которое преодолевают движущиеся в материале заряды, выделяется тепло. Количество теплоты, которая выделяется в цепи, равно разности начальной и конечной энергии всей системы Q = ¸ где

― начальная энергия системы [Дж];

― конечная энергия системы [Дж].

В цепи энергия скапливается на конденсаторах (энергия электрического поля) и на катушках индуктивности (энергия магнитного поля). Поэтому энергия электромагнитных сил в цепи в любой момент равна сумме энергий на конденсаторах и на катушках, которые входят в цепь.

Энергия электрического поля заряженного конденсатора равна We = $frac <2>= frac <2>= frac<2C>$ , где

We ― энергия электрического поля конденсатора, [Дж];

C ― электроемкость конденсатора, [Ф];

U ― напряжение на обкладках конденсатора, [В];

q ― заряд на обкладках конденсатора, [Кл].

Энергия магнитного поля катушки индуктивности равна E = $frac<2>$ , где

E ― энергия магнитного поля катушки [Дж];

L ― индуктивность катушки [Гн];

I ― сила тока в катушке [А].

Состояние равновесия и зарядка конденсаторов

Пример 1: в цепи, изображенной на рисунке, есть ЭДС и резисторы с сопротивлениями R1 и R2, оба конденсатора емкостями C1 и C2 разряжены.

Ток от источника ЭДС до конденсатора C1 будет идти до тех пор, пока конденсатор C1 не будет полностью заряжен. При этом от конденсатора C1 дальше заряды не проходят ― ни на резисторы R1 и R2, ни на конденсаторC2. Как только конденсатор C1 полностью заряжается, в системе наступает состояние равновесия ― напряжение на конденсаторе становится равным ЭДС, весь возможный заряд конденсатор принял. Поскольку ток через него не прошел до конденсатора C2 ― этот конденсатор так и остался незаряженным. Напряжение есть лишь на конденсаторе C1, а на конденсаторе C2напряжение равно нулю. Зарядка конденсатораC1:

После того, как конденсатор C1 заряжен, ток в цепи прекращается.

Пример 2: в цепи, изображенной на рисунке, есть ЭДС и резисторы с сопротивлениями R1 и R2, все три конденсатора емкостями C1, C2 и C3 разряжены.

Ток, выходя из источника ЭДС, разделяется на два тока ― один питает подзарядку конденсатораC1, а другой ― конденсатораC2. Состояние равновесия наступает, когда оба конденсатора полностью заряжены ― в цепи ток больше не проходит. Но так как ток дальше конденсаторов не проходит ― конденсатор C3 не получает заряд, и остается разряженным. Напряжение на конденсаторе C3 равно нулю.

Зарядка конденсаторов C1 иC2:

После того, как конденсаторыC1 и C2 заряжены, ток в цепи прекращается.

Конденсатор в электрической цепи

Конденсаторы довольно широко применяются в радиотехнических устройствах. Конденсаторы состоят из двух пластин, что изолированы со всех сторон. Главное назначение конденсатора – накопление и сохранение электроэнергии.

На каждой из пластин сохраняется соответствующий по знаку заряд. В итоге между ними появляется притяжение, благодаря которому конденсатор сохраняет электроэнергию.

Для того, чтобы разрядить конденсатор, нужно замкнуть выходы его пластин проводником. Высокоемкостные конденсаторы разряжают с использованием резисторов с более высоким сопротивлением.

Конденсатор в цепи постоянного тока

Различают электрический ток двух видов: постоянный и переменный. При различном токе конденсаторы работают по-разному. Постоянный ток не протекает через конденсатор, точнее, эксперименты показывают, что в первые доли секунды при подаче постоянного тока, он протекает через конденсатор, но это явление настолько незначительно, что при расчете работы электроцепи его не берут во внимание.

Не нашли что искали?

Просто напиши и мы поможем

Конденсатор в цепи переменного тока

Переменный ток в конденсаторе определяют с использованием цифрового осциллографа и генератора. Подавая переменное напряжение, фиксируют силу тока на входе и выходе конденсатора. Монитор осциллографа показывает график показаний тока и его амплитуду колебаний. При этом сигнал передается с некоторым шумом. Это радиоэлементы дают помехи, в основном резисторы. Наблюдается меньшее сопротивление переменному току со стороны конденсатора при увеличении значения его частоты. При этом также уменьшается сдвиг фаз до минимума. При низких частотах сдвиг фаз может достигать 90 градусов. Все вышесказанное говорит о том, что сопротивление конденсатора взаимосвязано с частотой переменного тока, и рассчитывается таким образом:

(C) – емкость конденсатора.

Если в данную формулу подставить нулевое значение частоты (то есть при постоянном токе), сопротивление конденсатора будет стремиться к бесконечности, что, по сути, соответствует разрыву цепи. Данную величину именуют «фильтром высокой частоты». При применении данного фильтра для конденсатора или резистора в звуковой аппаратуре, будет слышен высокий писк. То есть, данный фильтр глушит частоту басов. Подобные типа фильтров применяют в приборах радиоэлектроники для глушения нежелательных частот и пропуска полезных.

Принцип работы конденсатора

Конденсатор есть важным элементом в любой электрической схеме. Он может хранить электрический заряд довольно длительный период. Электроэнергия накапливается по принципу взаимного притяжения противоположно заряженных частиц. Емкость конденсатора тем больше, чем больше размеры его пластин. Высокоемкостные конденсаторы обычно имеют форму пластин, скрученных в рулоны, с выведенными соответствующими контактами. Конденсатор собирают таким образом, чтобы внутри не скапливалась влага, с этой целью используют бумажные ленты, пропитанные парафином. Например, такую конструкцию имеет самые простые конденсаторы, которые есть под капотом любого автомобиля. С каждой обкладки конденсатора обязательно выводится контакт. Пластины конденсатора ни в коем случае не должны соприкасаться между собой.

Сложно разобраться самому?

Попробуй обратиться за помощью к преподавателям

Если в самую простую цепь постоянного тока подсоединить конденсатор, он будет выполнять функцию разрыва.

В любой электроцепи есть такие основные элементы, как источники питания, резисторы, конденсаторы, катушки индуктивности, переключатели и провода.

Если переключатель выключен, ток не течет по цепи. При включении тока на первый контакт конденсатора, появляется напряжение источника и передается на конденсатор. При этом конденсатор начинает заряжаться. Зарядка длится до полного заряда емкости. После этого ток начинает течь дальше. Величина тока заряда уменьшается по мере зарядки конденсатора, а после полной зарядки ток заряда принимает нулевое значение.

Заряд источника питания имеет тот же знак, что и заряд конденсатора. При выключении переключателя цепь разрывается и в ней теперь есть два источника питания – конденсатор и первоначальный источник. Для работы конденсатора как источника питания необходимо начать его разрядку переключением в соответствующий режим.

При работе конденсатора в цепи источник питания постоянного тока может выдавать переменный ток. При зарядке конденсатора величина тока изменяется от нуля до максимума. Конденсатор даже с небольшим зарядом выдает в цепь переменный ток, меняющийся от нуля до максимума. А после полной его разрядки в цепи получается разрыв, и ток не течет.

Такие явления в электрических цепях именуются переходными. Они наблюдаются в цепях постоянного напряжения с участием реактивных сопротивлений.

Данные процессы характеризуются постоянной времени переходного процесса τ, которая рассчитывается так:

где (R) – сопротивление нагрузки (активное);

Понравилась статья? Поделиться с друзьями:
Добавить комментарий