Преобразователь частоты как работает

Частотный преобразователь – виды, принцип действия, схемы подключения

Ротор любого электродвигателя приводится в движение под действием сил, вызванных вращающимся электромагнитным полем внутри обмотки статора. Скорость его оборотов обычно определяется промышленной частотой электрической сети.

Ее стандартная величина в 50 герц подразумевает совершение пятидесяти периодов колебаний в течение одной секунды. За одну минуту их число возрастает в 60 раз и составляет 50х60=3000 оборотов. Такое же число раз проворачивается ротор под воздействием приложенного электромагнитного поля.

Если изменять величину частоты сети, приложенной к статору, то можно регулировать скорость вращения ротора и подключенного к нему привода. Этот принцип заложен в основу управления электродвигателями.

Виды частотных преобразователей

По конструкции частотные преобразователи бывают:

1. индукционного типа;

Асинхронные электродвигатели, выполненные по схеме с фазным ротором и запущенные в режим генератора, являются представителями первого вида. Они при работе обладают низким КПД и отмечаются маленькой эффективностью. Поэтому они не нашли широкого применения в производстве и используются крайне редко.

Способ электронного преобразования частоты позволяет плавно регулировать обороты как асинхронных, так и синхронных машин. При этом может быть реализован один из двух принципов управления:

1. по заранее заданной характеристике зависимости скорости вращения от частоты (V/f);

2. метод векторного управления.

Первый способ является наиболее простым и менее совершенным, а второй используется для точного регулирования скоростей вращения ответственного промышленного оборудования.

Особенности векторного управления частотным преобразованием

Отличием этого способа является взаимодействие, влияние устройства управления преобразователя на «пространственный вектор» магнитного потока, вращающийся с частотой поля ротора.

Алгоритмы для работы преобразователей по этому принципу создаются двумя способами:

1. бессенсорного управления;

Первый метод основан на назначении определенной зависимости чередования последовательностей широтно-импульсной модуляции (ШИМ) инвертора для заранее подготовленных алгоритмов. При этом амплитуда и частота напряжения на выходе преобразователя регулируются по скольжению и нагрузочному току, но без использования обратных связей по скорости вращения ротора.

Этим способом пользуются при управлении несколькими электродвигателями, подключенными параллельно к преобразователю частоты. Потокорегулирование подразумевает контроль рабочих токов внутри двигателя с разложением их на активную и реактивную составляющие и внесение корректив в работу преобразователя для выставления амплитуды, частоты и угла для векторов выходного напряжения.

Это позволяет повысить точность работы двигателя и увеличить границы его регулирования. Применение потокорегулирования расширяет возможности приводов, работающих на малых оборотах с большими динамическими нагрузками, такими как подъемные крановые устройства или намоточные промышленные станки.

Использование векторной технологии позволяет применять динамическую регулировку вращающихся моментов к трехфазным асинхронным двигателям.

Принципиальную упрощенную электрическую схему асинхронного двигателя можно представить следующим видом.

На обмотки статора, обладающие активным R1 и индуктивным X1 сопротивлениями, приложено напряжение u1. Оно, преодолевая сопротивление воздушного зазора Хв, трансформируется в обмотку ротора, вызывая в ней ток, который преодолевает ее сопротивление.

Векторная диаграмма схемы замещения

Ее построение помогает понять происходящие процессы внутри асинхронного двигателя.

Энергия тока статора разделяется на две части:

iµ — потокообразующую долю;

iw — моментообразующую составляющую.

При этом ротор обладает активным сопротивлением R2/s, зависящим от скольжения.

Для бессенсорного управления измеряются:

По их значениям рассчитывают:

iµ — потокообразующую составляющую тока;

iw — моментообразующую величину.

В алгоритм расчета уже заложили электронную эквивалентную схему асинхронного двигателя с регуляторами тока, в которой учтены условия насыщения электромагнитного поля и потерь магнитной энергии в стали.

Обе этих составляющих векторов тока, отличающиеся по углу и амплитуде, вращаются совместно с системой координат ротора и пересчитываются в стационарную систему ориентации по статору.

По этому принципу подстраиваются параметры частотного преобразователя под нагрузку асинхронного двигателя.

Принцип работы частотного преобразователя

В основу этого устройства, которое еще называют инвертором, заложено двойное изменение формы сигнала питающей электрической сети.

Вначале промышленное напряжение подается на силовой выпрямительный блок с мощными диодами, которые убирают синусоидальные гармоники, но оставляют пульсации сигнала. Для их ликвидации предусмотрена батарея конденсаторов с индуктивностью (LC-фильтр), обеспечивающая стабильную, сглаженную форму выпрямленному напряжению.

Затем сигнал поступает на вход преобразователя частоты, который представляет собой мостовую трехфазную схему из шести силовых транзисторов серии IGBT или MOSFET с диодами защиты от пробоя напряжений обратной полярности. Используемые ранее для этих целей тиристоры не обладают достаточным быстродействием и работают с большими помехами.

Для включения режима «торможения» двигателя в схему может быть установлен управляемый транзистор с мощным резистором, рассеивающим энергию. Такой прием позволяет убирать генерируемое двигателем напряжение для защиты конденсаторов фильтра от перезарядки и выхода из строя.

Способ векторного управления частотой преобразователя позволяет создавать схемы, осуществляющие автоматическое регулирование сигнала системами САР. Для этого используется система управления:

2. ШИМ (широтного импульсного моделирования).

Метод амплитудного регулирования основан на изменении входного напряжения, а ШИМ — алгоритма переключений силовых транзисторов при неизменном напряжении входа.

При ШИМ регулировании создается период модуляции сигнала, когда обмотка статора подключается по строгой очередности к положительным и отрицательным выводам выпрямителя.

Поскольку частота такта генератора довольно высокая, то в обмотке электродвигателя, обладающего индуктивным сопротивлением, происходит их сглаживание до синусоиды нормального вида.

Способы ШИМ управления позволяют максимально исключить потери энергии и обеспечивают высокий КПД преобразования за счет одновременного управления частотой и амплитудой. Они стали доступны благодаря развитию технологий управления силовыми запираемыми тиристорами серии GTO или биполярных марок транзисторов IGBT, обладающих изолированным затвором.

Принципы их включения для управления трехфазным двигателем показаны на картинке.

Каждый из шести IGBT-транзисторов подключается по встречно-параллельной схеме к своему диоду обратного тока. При этом через силовую цепь каждого транзистора проходит активный ток асинхронного двигателя, а его реактивная составляющая направляется через диоды.

Для ликвидации влияния внешних электрических помех на работу инвертора и двигателя в конструкцию схемы преобразователя частоты может включаться помехозащитный фильтр, ликвидирующий:

наводимые работающим оборудованием электрические разряды.

Их возникновение сигнализирует контроллер, а для уменьшения воздействия используется экранированная проводка между двигателем и выходными клеммами инвертора.

С целью улучшения точности работы асинхронных двигателей в схему управления частотных преобразователей включают:

ввода связи с расширенными возможностями интерфейса;

информационный Led-дисплей, отображающий основные выходные параметры;

тормозной прерыватель и встроенный ЭМС фильтр;

систему охлаждения схемы, основанную на обдуве вентиляторами повышенного ресурса;

функцию прогрева двигателя посредством постоянного тока и некоторые другие возможности.

Эксплуатационные схемы подключения

Частотные преобразователи создаются для работы с однофазными или трехфазными сетями. Однако, если есть промышленные источники постоянного тока с напряжением 220 вольт, то от них тоже можно запитывать инверторы.

Трехфазные модели рассчитываются на напряжение сети 380 вольт и выдают его на электродвигатель. Однофазные же инверторы питаются от 220 вольт и на выходе выдают три разнесенных по времени фазы.

Схема подключения частотного преобразователя к двигателю может быть выполнена по схемам:

Обмотки двигателя собираются в «звезду» для преобразователя, запитанного от трехфазной сети 380 вольт.

По схеме «треугольник» собирают обмотки двигателя, когда питающий его преобразователь подключен к однофазной сети 220 вольт.

Выбирая способ подключения электрического двигателя к преобразователю частоты надо обращать внимание на соотношение мощностей, которые может создать работающий двигатель на всех режимах, включая медленный, нагруженный запуск, с возможностями инвертора.

Нельзя постоянно перегружать частотный преобразователь, а небольшой запас его выходной мощности обеспечит ему длительную и безаварийную работу.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Ранее на эту тему: Электропривод

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Преобразователи частоты

В данной статье мы рассмотрим что такое частотный преобразователь, сферы применения преобразователей частоты, их плюсы и минусы, а также схемы частотников.

  1. Виды преобразователей частоты
  2. Способы управления преобразователем
  3. Режимы управления частотными преобразователями
  4. Преимущества частотных преобразователей
  5. Сферы применения

Преобразователи частоты (или частотники) – электротехническое оборудование для регулирования частоты переменного напряжения. Основная сфера применения этих устройств – изменение частоты вращения и крутящего момента электрических машин асинхронного типа. Принцип действия управления и регулирования основан на зависимости скорости вращения магнитного поля от частоты питающего напряжения.

Асинхронные электродвигатели широко используются в качестве приводов промышленного оборудования, насосных агрегатов, регулирующей арматуры и других устройств. Основным недостатком этих электрических машин являются постоянная скорость вращения, большие пусковые токи. При помощи частотных преобразователей возможно устранить эти недостатки и существенно расширить сферу применения электродвигателей переменного тока.

Виды преобразователей частоты

Частотные преобразователи различаются по конструкции, принципу действия, способу управления. По конструктивному исполнению преобразователи частоты разделяют на две большие группы:

Электромашинные частотники.

Электромашинные или индукционные преобразователи частоты представляют собой двигатели переменного тока, включенные в режим генератора. Применяются такие электротехнические устройства относительного редко, в условиях, где затруднено или невозможно применение электронных частотных преобразователей.

Электронные преобразователи.

Полупроводниковые ЧП состоят из силовой части, выполненной на транзисторах или тиристорах, и схемы управления на базе микроконтроллеров. Это электротехническое оборудование пригодно для трехфазных и однофазных приводов любого назначения. Различают ЧП с непосредственной связью с питающей сетью и устройства с промежуточным звеном постоянного тока.

Непосредственные преобразователи частоты

Такие частотники построены на базе быстродействующих тиристорных преобразователей, включенных по мостовым, перекрестным, нулевым и встречно-параллельным схемам.

Устройства такого типа включаются непосредственно в питающую сеть.

Плюсы непосредственных преобразователей частоты:

  • Возможностью рекуперации электроэнергии в сеть при работе в режиме торможения двигателя. Непосредственное включение обеспечивает двусторонний обмен электричеством.
  • Высоким к.п.д. за счет однократного преобразования частоты.
  • Возможностью наращивания мощности за счет присоединения дополнительных преобразователей.
  • Широким диапазоном низких частот. Непосредственные преобразователи обеспечивают стабильную работу привода на малых скоростях.

Минусы непосредственных преобразователей частоты:

  • Аппроксимированная форма выходного напряжения с наличием постоянных составляющих и субгармоник. Такая форма переменного напряжения на выходе устройства вызывает дополнительный нагрев двигателя, снижает момент, создает помехи.
  • Частота напряжения на выходе преобразователя не превышает аналогичную характеристику сетевого напряжения. Таким образом, при помощи этих устройств можно только снижать скорость вращения двигателей.
  • Основная сфера непосредственных преобразователей – электроприводы на базе асинхронных и синхронных двигателей большой и средней мощности.

Преобразователи частоты с промежуточным звеном постоянного тока.

Частотные преобразователи этого типа выполнены на базе схемы двойного преобразования. Питающее сетевое напряжение преобразуется в постоянное, затем сглаживается и инвертируется в переменное выходное напряжение заданной частоты.

Плюсы преобразователей с промежуточным звеном постоянного тока:

  • Возможностью получения выходного напряжения с частотой как выше, так и ниже аналогичного параметра сети питания. Частотники на базе схемы двойного преобразования используют для высоко- средне- и низкоскоростных электроприводов.
  • Чистой синусоидальной формой напряжения на выходе. Схема преобразователя позволяет получать переменное напряжение с минимальным отклонением от синусоидальной формы.
  • Возможностью построения простых и сложных силовых и управляющих схем для приводов с различными требованиями к скорости реагирования, диапазону скоростей.
  • Возможностью адаптации к сетям постоянного тока. Преобразователи данного типа можно приспособить для питания от резервных и аварийных источников постоянного тока без дополнительных устройств. Это позволяет применять такие частотники в приводах ответственного оборудования с резервными источниками электроэнергии.
  • Разнообразием алгоритмов управления. Преобразователи со звеном постоянного тока можно запрограммировать и адаптировать практически ко всем электроприводам, в том числе и претенциозным, где требуется особо точное регулирование скорости и момента.

Минусы преобразователей с промежуточным звеном постоянного тока:

  • Относительно большую массу и габариты, что обусловлено наличием выпрямительного, фильтрующего и инверторного блоков.
  • Повышенные потери мощности. Схема двойного преобразования несколько уменьшает общий к.п.д.

Устройство преобразователей с промежуточным звеном постоянного тока

Состоят такие преобразователи из нескольких основных блоков:

  • Выпрямителя. Для ЧП используются диодные и тиристорные преобразователи постоянного тока. Первые отличаются высоким качеством постоянного напряжения практически с полным отсутствием пульсации, низкой стоимостью и надежностью. Однако диодные выпрямители не позволяют реализовать возможность рекуперации электроэнергии в сеть при торможении двигателя. Выпрямители на тиристорах обеспечивают возможность протекания тока в обоих направлениях и позволяют отключать преобразователь от сети без дополнительной коммутирующей аппаратуры.
  • Фильтра. Выходное напряжение тиристорных управляемых выпрямителей имеет значительную пульсацию. Для ее сглаживания используют реакторы, емкостные или индуктивно-емкостные фильтры.
  • Инвертора. В ЧП используют инверторы напряжения и тока. Последние обеспечивают рекуперацию электроэнергии в сеть и применяются для управления электрическими машинами с частым пуском, реверсом и остановкой, например, крановыми двигателями.
  • Частотники на базе инверторов напряжения выдают на выходе напряжение формы “чистый синус”. Благодаря этому преобразователи такого типа получили наиболее широкое распространение.
  • Микропроцессора. Этот блок осуществляет управление входным выпрямителем, прием и обработку сигналов с датчиков, взаимодействие с автоматизированной системой высшего уровня, запись и хранение информации о событиях, формирует выходное напряжения ЧП соответствующей частоты. А также выполняет функции защиты от перегрузок, обрыва фазы и других аварийных и ненормальных режимов работы.

Способы управления преобразователем

По принципу управления различают 2 основных вида частотных преобразователей:

ЧП со скалярным управлением

Частотники этого типа выдают на выходе напряжение определенной частоты и амплитуды для поддержания определенного магнитного потока в обмотках статора. Частотники с таким принципом регулирования отличаются относительно низкой стоимостью, простотой конструкции. Нижний предел регулировки скорости составляет около 10 % от номинальной частоты вращения. Их можно использовать для управления сразу несколькими двигателями. Скалярные ЧП используют для приводов насосных агрегатов, вентиляторов и других устройств и оборудования, где не требуется поддерживать скорость вращения ротора вне зависимости от нагрузки.

ЧП с векторным управлением

Микропроцессорные устройства преобразователей с векторным управлением автоматически вычисляют взаимодействие магнитных полей статора и ротора. ЧП такого типа обеспечивают постоянную частоту вращения ротора вне зависимости от нагрузки. Они используются для оборудования, где необходимо поддерживать необходимый момент силы при низких скоростях, высокое быстродействие и точность регулирования. Применение векторных ЧП позволяет регулировать частоту вращения, задавать требуемый момент на валу.

ЧП с векторным управлением делятся на преобразователи бездатчикового типа и устройства с обратной связью по скорости. Последние используются для приводов с широким диапазоном регулирования скорости до 1:1000, необходимости позиционирования точного положения вала, регулирования момента при низких скоростях, точного поддержания частоты вращения, пуска двигателя с номинальным моментом. Преобразователи без датчика скорости применяют для приводов с более низкими требованиями.

Режимы управления частотными преобразователями

В большинстве моделей современных частотных преобразователей реализована возможность управления в нескольких режимах:

1) Ручное управление.

2) Внешнее управление.

3) Управление по дискретным входам или “сухим контактам”.

4) Управление по событиям.

Преимущества частотных преобразователей.

1) Экономия электроэнергии.

2) Увеличение срока службы промышленного оборудования.

3) Отсутствие необходимости проводить техническое обслуживание.

4) Возможность удаленного управления и контроля параметров оборудования с электроприводом.

5) Широкий диапазон мощности двигателей.

6) Защита электродвигателя от аварий и аномальных режимов работы.

7) Снижение уровня шума работающего двигателя.

Сферы применения

Частотно-регулируемые приводы применяют:

  • Для кранов и грузоподъемных машин . Крановые двигатели работают в режиме частых пусков, остановок, изменяющейся нагрузки. ЧП обеспечивают отсутствие рывков и раскачивания груза при пусках и остановках, остановку крана точно в требуемом месте, снижают нагрев электродвигателей и максимальный пусковой момент.
  • Для привода нагнетательных вентиляторов в котельных и дымососов. Общее управление с плавной регулировкой дутьевых и вытяжных вентиляторов позволяет автоматизировать процесс горения и обеспечить максимальный к.п.д . котельных агрегатов.
  • Для транспортеров, прокатных станов, конвейеров, лифтов. ЧП регулирует скорость перемещения транспортного оборудования без рывков и ударов, что увеличивает срок службы механических узлов. Для насосных агрегатов. ЧП позволяют обойтись без задвижек и вентилей, регулирующих давление и производительность, и существенно увеличить общий к.п.д системы водоподачи.
  • Для электродвигателей станков. Использование преобразователя частоты вместо коробки передач позволяет плавно увеличивать или уменьшать частоту вращения рабочего органа станка, осуществлять реверс. ЧП широко используются для станков с ЧПУ и высокоточного промышленного оборудования.

Внедрение частотно-регулируемых приводов дает значительный экономический эффект. Снижение затрат достигается за счет сокращения потребления электроэнергии, расходов на ремонт и ТО двигателей и оборудования, возможности использования более дешевых асинхронных электродвигателей с короткозамкнутым ротором, а также сокращения других производственных издержек. Средний срок окупаемости частотных преобразователей составляет от 3-х месяцев до трех лет.

Что нужно знать о частотном преобразователе

Частотный преобразователь для электродвигателя

Технические аспекты применения частотных преобразователей

В настоящее время асинхронный электродвигатель стал основным устройством в большинстве электроприводов. Все чаще для управления им используется частотный преобразователь — инвертор с ШИМ-регулированием. Такое управление дает массу преимуществ, но и создает некоторые проблемы выбора тех или иных технических решений. Попробуем разобраться в них более подробно.

Устройство частотных преобразователей

Разработка и производство широкой номенклатуры мощных высоковольтных транзисторных IGBT модулей предоставили возможность реализации многофазных силовых переключателей, управляемых непосредственно с помощью цифровых сигналов. Программируемые вычислительные средства позволили на входах коммутаторов сформировать числовые последовательности, обеспечивающие сигналы частотного управления асинхронными электродвигателями.Разработка и массовый выпуск однокристальных микроконтроллеров, обладающих большими вычислительными ресурсами, обусловили возможность перехода к следящим электроприводам с цифровыми регуляторами.

Силовые преобразователи частоты, как правило, реализуют по схеме, содержащей выпрямитель на мощных силовых диодах или транзисторах и инвертор (управляемый коммутатор) на IGBT транзисторах, шунтированных диодами (рис. 1).

Рис. 1. Схема частотного преобразователя

Входной каскад выпрямляет подаваемое синусоидальное напряжение сети, которое после сглаживания с помощью индуктивно-емкостного фильтра служит источником электропитания управляемого инвертора, вырабатывающего при действии команд цифрового управления сигнал с импульсной модуляцией, который формирует в обмотках статора токи синусоидальной формы с параметрами, обеспечивающими требуемый режим работы электродвигателя.

Цифровое управление силовым преобразователем осуществляется с помощью микропроцессорных аппаратных средств и соответствующим поставленным задачам программным обеспечением. Вычислительное устройство в режиме реального времени вырабатывает сигналы управления 52 модулями, а также производит обработку сигналов измерительных систем, контролирующих работу привода.

Силовые устройства и управляющие вычислительные средства объединены в составе конструктивно оформленного промышленного изделия, называемого частотным преобразователем.

В промышленном оборудовании применяются два основных вида частотных преобразователей:

  • фирменные преобразователи для конкретных типов оборудования.
  • универсальные преобразователи частоты предназначены для многоцелевого управления работой АД в задаваемых пользователем режимах.

Установку и контроль режимов работы частотного преобразователя можно производить с помощью пульта управления, оснащенного экраном для индикации введенной информации. В простом варианте скалярного регулирования частоты можно воспользоваться набором простых логических функций, имеющихся в заводских установках контроллера, и встроенным ПИД-регулятором.

Для осуществления более сложных режимов управления с использованием сигналов с датчиков обратных связей необходимо разработать структуру САУ и алгоритм, который следует запрограммировать с помощью подключаемого внешнего компьютера.

Большинство производителей выпускает целый ряд преобразователей частоты, отличающихся входными и выходными электрическими характеристиками, мощностью, конструктивным исполнением и другими параметрами. Для подключения к внешнему оборудованию (электросети, двигателю) могут быть использованы дополнительные внешние элементы: магнитные пускатели, трансформаторы, дроссели.

Типы сигналов управления

Необходимо делать различия между сигналами различных типов и для каждого из них использовать отдельный кабель. Различные типы сигналов могут оказывать влияние друг на друга. На практике такое разделение встречается часто, например кабель от датчика давления может быть подключен непосредственно к преобразователю частоты.

На рис. 2 приведен рекомендуемый вариант подключения преобразователя частоты при наличии различных цепей и сигналов управления.

Рис. 2. Пример подключения силовых цепей и цепей управления преобразователя частоты

Можно выделить следующие типы сигналов:

  • аналоговые — сигналы напряжения или тока (0. 10 В, 0/4. 20 мА), значение которых меняется медленно или редко, обычно это сигналы управления или измерения;
  • дискретные сигналы напряжения или тока (0. 10 В, 0/4. 20 мА), которые могут принимать только два редко изменяющихся значения (высокое или низкое);
  • цифровые (данные) — сигналы напряжения (0. 5 В, 0. 10 В), которые меняются быстро и с высокой частотой, обычно это сигналы портов RS232, RS485 и т.п.;
  • релейные — контакты реле (0. 220 В переменного тока) могут включать индуктивные токи в зависимости от подключенной нагрузки (внешние реле, лампы, клапаны, тормозные устройства и т.д.).

Выбор мощности частотного преобразователя

При выборе мощности частотного преобразователя необходимо основываться не только на мощности электродвигателя, но и на номинальных токах и напряжениях преобразователя и двигателя. Дело в том, что указанная мощность частотного преобразователя относится только к эксплуатации его со стандартным 4-х полюсным асинхронным электродвигателем в стандартном применении.

Реальные приводы имеют много аспектов, которые могут привести к росту токовой нагрузке привода, например, при пуске. В общем случае, применение частотного привода позволяет снизить токовые и механические нагрузки за счет плавного пуска. Например, пусковой ток снижается с 600% до 100-150% от номинального.

Работа привода на пониженной скорости

Необходимо помнить, что хотя частотный преобразователь легко обеспечивает регулирование по скорости 10:1, но при работе двигателя на низких оборотах мощности собственного вентилятора может не хватать. Необходимо следить за температурой двигателя и обеспечить принудительную вентиляцию.

Электромагнитная совместимость

Поскольку частотный преобразователь мощный источник высокочастотных гармоник, то для подключения двигателей нужно использовать экранированный кабель минимальной длины. Прокладку такого кабеля необходимо вести на расстоянии не менее 100 мм от других кабелей. Это минимизирует наводки. Если нужно пересечь кабели, то пересечение делается под углом 90 градусов.

Питание от аварийного генератора

Плавный пуск, который обеспечивает частотный преобразователь позволяет снизить необходимую мощность генератора. Так как при таком пуске ток снижается в 4-6 раз, то в аналогичное число раз можно снизить мощность генератора. Но все равно, между генератором и приводом должен быть установлен контактор, управляемый от релейного выхода частотного привода. Это защищает частотный преобразователь от опасных перенапряжений.

Питание трехфазного преобразователя от однофазной сети

Трехфазные частотные преобразователи могут быть запитаны от однофазной сети, но при этом их выходной ток не должен превышать 50% от номинального.

Экономия электроэнергии и денег

Экономия происходит по нескольким причинам. Во-первых, за счет роста косинуса фи до значений 0.98, т.е. максимум мощности используется для совершения полезной работы, минимум уходит в потери. Во-вторых, близкий к этому коэффициент получается на всех режимах работы двигателя.

Без частотного преобразователя, асинхронные двигатели на малых нагрузках имеют косинус фи 0.3-0.4. В-третьих, нет необходимости в дополнительных механических регулировках (заслонках, дросселях, вентилях, тормозах и т.д.), все делается электронным образом. При таком устройстве регулирования, экономия может достигать 50%.

Синхронизация нескольких устройств

За счет дополнительных входов управления частотного привода можно синхронизировать процессы на конвейере или задавать соотношения изменения одних величин, в зависимости от других. Например, поставить в зависимость скорость вращения шпинделя станка от скорости подачи резца. Процесс будет оптимизирован, т.к. при увеличении нагрузки на резец, подача будет уменьшена и наоборот.

Защита сети от высших гармоник

Для дополнительной защиты, кроме коротких экранированных кабелей, используются сетевые дроссели и шунтирующие конденсаторы. Дроссель, кроме того, ограничивает бросок тока при включении.

Правильный выбор класса защиты

Для безотказной работы частотного привода необходим надежный теплоотвод. Если использовать высокие классы защиты, например IP 54 и выше, то трудно или дорого добиться такого теплоотвода. Поэтому, можно использовать отдельный шкаф с высоким классом защиты, куда ставить модули с меньшим классом и осуществлять общую вентиляцию и охлаждение.

Параллельное подключение электродвигателей к одному частотному преобразователю

С целью снижения затрат, можно использовать один частотный преобразователь для управления несколькими электродвигателями. Его мощность нужно выбирать с запасом 10-15% от суммарной мощности всех электродвигателей. При этом нужно минимизировать длины моторных кабелей и очень желательно ставить моторный дроссель.

Большинство частотных преобразователей не допускают отключение или подключение двигателей с помощью контакторов во время работы частотного привода. Это производится только через команду стоп привода.

Задание функции регулирования

Для получения максимальных показателей работы электропривода, таких как: коэффициент мощности, коэффициент полезного действия, перегрузочная способность, плавность регулирования, долговечность, нужно правильно выбирать соотношение между изменением рабочей частоты и напряжения на выходе частотного преобразователя.

Функция изменения напряжения зависит от характера момента нагрузки. При постоянном моменте, напряжение на статоре электродвигателя должно регулироваться пропорционально частоте (скалярное регулирование U/F = const). Для вентилятора, например, другое соотношение – U/F*F = const. Если увеличиваем частоту в 2 раза, то напряжение нужно увеличить в 4 (векторное регулирование). Есть приводы и с более сложными функциями регулирования.

Преимущества использования регулируемого электропривода с частотным преобразователем

Кроме повышения КПД и энергосбережения такой электропривод позволяет получить новые качества управления. Это выражается в отказе от дополнительных механических устройств, создающих потери и снижающих надежность систем: тормозов, заслонок, дросселей, задвижек, регулирующих клапанов и т.д. Торможение, например, может быть осуществлено за счет обратного вращения электромагнитного поля в статоре электродвигателя. Меняя только функциональную зависимость между частотой и напряжением, мы получаем другой привод, не меняя ничего в механике.

Чтение документации

Следует заметить, что хотя частотные преобразователи похожи друг на друга и, освоив один, легко разобраться с другим, тем не менее, необходимо тщательно читать документацию. Некоторые производители накладывают ограничения на использование своей продукции, а при их нарушении снимают изделия с гарантии.

Источник: ООО «СВ-Техноэлектро»

Что такое частотный преобразователь, основные виды и какой принцип работы

В различных ситуациях может возникнуть необходимость преобразования частоты исходного тока в ток с напряжением регулируемой частоты. Это требуется, например, при работе асинхронных двигателей для изменения их скорости вращения. В этой статье будет рассмотрены назначение и принцип работы частотного преобразователя.

Что такое частотный преобразователь

Частотный преобразователь (ПЧ) – это электротехническое устройство, которое преобразовывает и плавно регулирует однофазный или трехфазный переменный ток с частотой 50 Гц в аналогичный по типу ток с частотой от 1 до 800 Гц. Такие устройства широко применяются для управления работой различных электрических машин асинхронного типа, например, для изменения частоты их вращения. Также существуют аппараты для использования в промышленных высоковольтных сетях.

Простые преобразователи регулируют частоту и напряжение в соответствии с характеристикой V/f, сложные приборы используют векторное управление.

Частотный преобразователь является технически сложным устройством и состоит не только из преобразователя частоты, но и имеет защиту от перегрузок по току, от перенапряжения и короткого замыкания. Также такое оборудование может иметь дроссель для улучшения формы сигнала и фильтры для уменьшения различных электромагнитных помех. Различают электронные преобразователи, а также электромашинные устройства.

Принцип работы частотного преобразователя

Электронный преобразователь состоит из нескольких основных компонентов: выпрямителя, фильтра, микропроцессора и инвертора.

Выпрямитель имеет связку из диодов или тиристоров, которые выпрямляют исходный ток на входе в преобразователь. Диодные ПЧ характеризуются полным отсутствием пульсаций, являются недорогими, но при этом надежными приборами. Преобразователи на основе тиристоров создают возможность для протекания тока в обоих направлениях и позволяют возвращать электрическую энергию в сеть при торможении двигателя.

Фильтр используется в тиристорных устройствах для снижения или исключения пульсаций напряжения. Сглаживание производится с помощью ёмкостных или индуктивно-ёмкостных фильтров.

Микропроцессор – является управляющим и анализирующим звеном преобразователя. Он принимает и обрабатывает сигналы с датчиков, что позволяет регулировать выходной сигнал с преобразователя частоты встроенным ПИД-регулятором. Также данный компонент системы записывает и хранит данные о событиях, регистрирует и защищает аппарат от перегрузок, короткого замыкания, анализирует режим работы и отключает устройство при аварийной работе.

Инвертор напряжения и тока используется для управления электрическими машинами, то есть для плавного регулирования частоты тока. Такое устройство выдает на выходе «чистый синус», что позволяет использовать его во многих сферах промышленности.

Принцип работы электронного частотного преобразователя (инвертора) заключается в следующих этапах работы:

  1. Входной синусоидальный переменный однофазный или трехфазный ток выпрямляется диодным мостом или тиристорами;
  2. При помощи специальных фильтров (конденсаторов) происходит фильтрация сигнала для снижения или исключения пульсаций напряжения;
  3. Напряжение преобразуется в трехфазную волну с определенными параметрами с помощью микросхемы и транзисторного моста;
  4. На выходе из инвертора прямоугольные импульсы преобразовываются в синусоидальное напряжение с заданными параметрами.

Виды преобразователей частоты

Существует несколько типов частотников, которые на данный момент являются самыми распространенными для производства и использования:

Электромашинные (электроиндукционные) преобразователи: используются в тех случаях, когда невозможно или нецелесообразно применение электронных ПЧ. Конструктивно такие устройства являются асинхронными двигателями с фазным ротором, которые работают в режиме генератора-преобразователя.

Данные устройства являются преобразователями со скалярным управлением. На выходе из данного аппарата создается напряжение заданной амплитуды и частоты для поддержания определенного магнитного потока в обмотках статора. Они применяются в тех случаях, когда не требуется поддерживать скорость вращения ротора в зависимости от нагрузки (насосы, вентиляторы и прочее оборудование).

Электронные преобразователи: широко применяется в любых условиях работы для различного оборудования. Такие устройства являются векторными, они автоматически вычисляют взаимодействие магнитных полей статора и ротора и обеспечивают постоянное значение частоты вращения ротора вне зависимости от нагрузки.

  1. Циклоконверторы;
  2. Циклоинверторы;
  3. ПЧ с промежуточным звеном постоянного тока:
  • Частотный преобразователь источника тока;
  • Частотный преобразователь источника напряжения (с амплитудно- или широтно- импульсной модуляцией).

По сфере применения оборудование может быть:

  • для оборудования мощностью до 315 кВт;
  • векторные преобразователи для мощности до 500 кВт;
  • взрывозащищённые устройства для применения во взрывоопасных и запыленных условиях;
  • частотные преобразователи, монтируемые на электродвигатели;

Каждый тип частотного преобразователя имеет определенные преимущества и недостатки и применим для различного оборудования и нагрузок, а также условий работы.

Управление частотным преобразователем может быть ручным или внешним. Ручное управление осуществляется с пульта управления ПЧ, которым можно отрегулировать частоту вращения или остановить работу. Внешнее управление выполняется при помощи автоматических систем управления (АСУТП), которые могут контролировать все параметры устройства и позволяют переключать схему или режим работы (через ПЧ или байпас). Также внешнее управление позволяет программировать работу преобразователя в зависимости от условий работы, нагрузки, времени, что позволяет работать в автоматическом режиме.

Для чего может быть нужен электродвигателю частотный преобразователь

Применение частотных преобразователей позволяет снизить затраты на электроэнергию, расходы на амортизацию двигателей и оборудования. Их возможно использовать для дешевых двигателей с короткозамкнутым ротором, что снижает издержки производства.

Многие электродвигатели работают в условиях частой смены режимов работы (частые пуски и остановки, изменяющуюся нагрузку). Частотные преобразователи позволяют плавно запускать электродвигатель и снижают максимальный пусковой момент и нагрев оборудования. Это важно, например, в грузоподъемных машинах и позволяет снизить негативное влияние резких пусков, а также исключить раскачивание груза и рывки при остановке.

При помощи ПЧ можно плавно регулировать работу нагнетательных вентиляторов, насосов и позволяет автоматизировать технологические процессы (применяются в котельных, на горнодобывающих производствах, в нефтедобывающей и нефтеперерабатывающей сферах, на водопроводных станциях и других предприятиях).

Использование частотных преобразователей в транспортерах, конвейерах, лифтах позволяет увеличить срок службы их узлов, так как снижает рывки, удары и другие негативные факторы при пусках и остановке оборудования. Они могут плавно увеличивать и уменьшать частоту вращения двигателя, осуществлять реверсивное движение, что важно для большого количества высокоточного промышленного оборудования.

Преимущества частотных преобразователей:

  1. Снижение затрат на электроэнергию: за счет снижения пусковых токов и регулирования мощности двигателя исходя из нагрузки;
  2. Увеличение надежности и долговечности оборудования: позволяет продлить срок эксплуатации и увеличить срок от одного технического облуживания до другого;
  3. Позволяет внедрить внешний контроль и управление оборудованием с удаленных компьютерных устройств и способность встраивания в системы автоматизации;
  4. Частотные преобразователи могут работать с любой мощностью нагрузки (от одного киловатта до десятков мегаватт);
  5. Наличие специальных компонентов в составе частотных преобразователей позволяет защитить от перегрузок, обрыва фазы и короткого замыкания, а также обеспечить безопасную работу и отключение оборудования при возникновении аварийной ситуации.

Конечно, глядя на такой список достоинств можно задаться вопросом, почему бы их не использовать для всех двигателей на предприятии? Ответ тут очевиден, увы, но это высокая стоимость частотников, их монтаж и наладка. Не каждое предприятие может позволить себе эти расходы.

Особенности и схема подключения частотного преобразователя к разным типам электродвигателей

Схема работы устройства плавного пуска, его назначение и конструкция

Преобразователи напряжения с 12 на 220 вольт

Устройство, виды и принцип действия асинхронных электродвигателей

Что такое импульсный блок питания и где применяется

Что такое контактор: назначение, принцип работы, виды, схемы подключения

Что такое частотный преобразователь, как он работает и для чего нужен

  • Определение
  • Устройство
  • Виды частотников и сфера применения
  • Способы управления
  • Количество фаз
  • Схема подключения

Определение

По определению частотный преобразователь – это электронный силовой преобразователь для изменения частоты переменного тока. Но в зависимости от исполнения изменяется и уровень напряжения, и число фаз. Может быть вам не совсем понятно, для чего нужен такой прибор, но мы постараемся рассказать о нём простыми словами.

Частота вращения вала синхронных и асинхронных двигателей (АД) зависит от частоты вращения магнитного потока статора и определяется по формуле:

где n – число оборотов вала АД, p – число пар полюсов, s – скольжение, f – частота переменного тока (для РФ – 50 Гц).

Простым языком, частота вращения ротора зависит от частоты и числа пар полюсов. Число пар полюсов определяется конструкцией катушек статора, а частота тока в сети постоянна. Поэтому, чтобы регулировать обороты мы можем регулировать только частоту с помощью преобразователей.

Устройство

С учетом сказанного выше сформулируем заново ответ на вопрос, что это такое:

Частотный преобразователь – это электронное устройство для изменения частоты переменного тока, следовательно, и числа оборотов ротора асинхронной (и синхронной) электрической машины.

Условное графическое обозначение согласно ГОСТ 2.737-68 вы можете видеть ниже:

Электронным он называется потому, что в основе лежит схема на полупроводниковых ключах. В зависимости от функциональных особенностей и типа управления будут видоизменяться и принципиальная электрическая схема, и алгоритм работы.

На схеме ниже вы видите как устроен частотный преобразователь:


Принцип действия преобразователя частоты лежит в следующем:

  • Сетевое напряжение подаётся на выпрямитель 1 и становится выпрямленным пульсирующим.
  • В блоке 2 сглаживаются пульсации и частично компенсируется реактивная составляющая.
  • Блок 3 – это группа силовых ключей, управляемых системой управления (4) методом широтно-импульсной модуляции (ШИМ). Такая конструкция позволяет получить на выходе двухуровневое ШИМ-регулируемое напряжение, которое после сглаживания приближается к синусоидальному виду. В дорогих моделях нашла применение трёхуровневая схема, где используется больше ключей. Она позволяет добиться более близкой к синусоидальной формы сигнала. В качестве полупроводниковых ключей могут использоваться тиристоры, полевые или IGBT-транзисторы. В последнее время наиболее востребованы и популярны последние два типа из-за эффективности, малых потерь и удобства управления.
  • С помощью ШИМ формируется нужный уровень напряжения, простыми словами – так модулируют синусоиду, поочередно включая пары ключей, формируя линейное напряжение.

Так мы кратко рассказали, как работает и из чего состоит частотный преобразователь для электродвигателя. Он используется в качестве вторичного источника электропитания и не просто управляет формой тока питающей сети, а преобразует его величину и частоту в соответствии с заданными параметрами.

Виды частотников и сфера применения

Способы управления

Регулировка оборотов может осуществляться разными способами, как по способу установки требуемой частоты, так и по способу регулирования. Частотники по способу управления делят на два типа:

  1. Со скалярным управлением.
  2. С векторным управлением.

Устройства первого типа регулируют частоту по заданной функции U/F, то есть вместе с частотой изменяется и напряжение. Пример такой зависимости напряжения от частоты вы можете наблюдать ниже.

Она может отличаться и программироваться под конкретную нагрузку, например, на вентиляторах она не линейная, а напоминает ветвь параболы. Такой принцип работы поддерживает магнитный поток в зазоре между ротором и статором почти постоянным.

Особенностью скалярного управления является его распространенность и относительная простота реализации. Используется чаще всего для насосов, вентиляторов и компрессоров. Такие частотники часто используют, если нужно поддерживать стабильное давление (или другой параметр), это могут быть погружные насосы для скважин, если рассматривать бытовое применение.

На производстве же сфера применения широка, например, регулировка давления в тех же трубопроводах и производительности автоматических систем вентиляции. Диапазон регулирования обычно составляет 1:10, простым языком максимальная скорость от минимальной может отличаться в 10 раз. Из-за особенностей реализации алгоритмов и схемотехники такие устройства обычно дешевле, что и является основным преимуществом.

Недостатки:

  • Не слишком точная поддержка оборотов.
  • Медленнее реакция на изменение режима.
  • Чаще всего нет возможности контролировать момент на валу.
  • С ростом скорости сверх номинальной падает момент на валу двигателя (то есть когда поднимаем частоту выше номинальных 50 Гц).

Последнее связано с тем, что напряжение на выходе зависит от частоты, при номинальной частоте напряжение равняется сетевому, а выше частотник поднимать «не умеет», на графике вы могли видеть ровную часть эпюры после 50 Гц. Следует отметить и зависимость момента от частоты, она падает по закону 1/f, на графике ниже изображена красным, а зависимость мощности от частоты синим.

Преобразователи частоты с векторным управлением имеют другой принцип работы, здесь не просто напряжение соответствует кривой U/f. Характеристики выходного напряжения изменяются в соответствии с сигналами от датчиков, так чтобы на валу поддерживался определенный момент. Но зачем нужен такой способ управления? Более точная и быстрая регулировка – отличительные черты частотного преобразователя с векторным управлением. Это важно в таких механизмах, где принцип действия связан с резким изменением нагрузки и момента на исполнительном органе.

Такая нагрузка характерна для токарных и других видов станков, в том числе ЧПУ. Точность регулирования до 1,5%, диапазон регулировки – 1:100, для большей точности с датчиками скорости и пр. – 0,2% и 1:10000 соответственно.

На форумах бытует мнение, что на сегодняшний день разница в цене между векторными и скалярными частотниками меньше чем была раньше (15-35% в зависимости от производителя), а главным отличием является в большей степени прошивка, чем схемотехника. Также отметим, что большинство векторных моделей поддерживают и скалярное управление.

  • большая стабильность работы и точность;
  • быстрее реакция на изменения нагрузки и высокий момент на низкой скорости;
  • шире диапазон регулирования.

Главный недостаток – стоит дороже, чем скалярные.

В обоих случаях частота может задаваться вручную или датчиками, например, датчиком давления или расходомером (если речь вести о насосах), потенциометром или энкодером.

Во всех или почти во всех преобразователях частоты есть функция плавного пуска двигателя, что позволяет легче пускать двигатели от аварийных генераторов практически без риска его перегрузки.

Количество фаз

Кроме способов реагирования частотники отличаются и количеством фаз на входе и выходе. Так различают частотные преобразователи с однофазным и трёхфазным входом.

При этом большинство трёхфазных моделей могут питаться от одной фазы, но при таком применении их мощность уменьшается до 30-50%. Это связано с допустимой токовой нагрузкой на диоды и другие силовые элементы схемы. Однофазные же модели выпускаются в диапазоне мощностей до 3 кВт.

Важно! Учтите, что при однофазном подключении с напряжением на вход 220В, будет выход 3 фазы по 220В, а не по 380В. То есть линейное на выходе будет именно 220В, если говорить кратко. В связи с чем распространенные двигатели с обмотками, рассчитанными на напряжения 380/220В нужно соединять в треугольник, а те что на 127/220В – в звезду.

В сети вы можете найти много предложений типа «частотный преобразователь 220 на 380» — это в большинстве случаев маркетинг, продавцы любые три фазы называют «380В».

Чтобы получить настоящие 380В из одной фазы нужно либо использовать однофазный трансформатор 220/380 (если вход преобразователя частоты рассчитан на такое напряжение), либо использовать специализированный частотный преобразователь с однофазным входом и 380В трёхфазным выходом.

Отдельным и более редким видом преобразователей частоты являются однофазные частотники с однофазным выходом 220. Они предназначены для регулировки однофазных двигателей с конденсаторным пуском. Примером таких устройств являются:

  • ERMAN ER-G-220-01
  • INNOVERT IDD

Схема подключения

В реальности же, чтобы получить из частотного преобразователя 380В выход 3 фазы, нужно подключить на вход 3 фазы 380В:

Подключение частотника к одной фазе аналогично, за исключением подключения питающих проводов:

Однофазный преобразователь частоты для двигателя с конденсатором (насоса или вентилятора малой мощности) подключается по такой схеме:

Как вы могли видеть на схемах, кроме питающих проводов и проводов к двигателю у частотника есть и другие клеммы, к ним подключаются датчики, кнопки выносного пульта управления, шины для подключения к компьютеру (чаще стандарта RS-485) и прочее. Это даёт возможность управления двигателем по тонким сигнальным проводам, что позволяет убрать частотный преобразователь в электрощит.

Частотники – это универсальные устройства, назначение которых не только регулировка оборотов, но и защита электродвигателя от неправильных режимов работы и электропитания, а также от перегрузки. Кроме основной функции в устройствах реализуется плавный пуск приводов, что снижает износ оборудования и нагрузки на электросеть. Принцип работы и глубина настройки параметров большинства частотных преобразователей позволяет экономить электроэнергию при управлении насосами (ранее управление осуществлялось не за счет производительности насоса, а с помощью задвижек) и другим оборудованием.

На этом мы и заканчиваем рассмотрение вопроса. Надеемся, после прочтения статья вам стало понятно, что такое частотный преобразователь и для чего он нужен. Напоследок рекомендуем просмотреть полезно видео по теме:

Наверняка вы не знаете:

Понравилась статья? Поделиться с друзьями:
Добавить комментарий