В чем измеряется электрическая сила

Сила тока: что это и как её измерить

Какой силы ток течёт в лампочке и молнии, сколько ампер смертельны для человека, почему перегорают предохранители и как работает прибор для измерения силы тока.

Что такое сила тока

Представим обычный водопроводный кран. Открываем вентиль — бежит вода. Чем больше мы будем поворачивать ручку, тем сильнее станет напор и тем больше воды будет выливаться из крана за определённое время.

Похоже обстоит дело и с электрическим током. Только вместо крана — проводник, молекулы воды — заряженные частицы, напор — напряжение, а расход воды — сила тока.

Сила тока (I) — это отношение электрического заряда (q), прошедшего через поперечное сечение проводника, ко времени его прохождения (t).

Единица измерения силы тока — Ампер (A). Она названа в честь Андре-Мари Ампера — французского физика, который совершил несколько важных открытий, связанных с электричеством.

Один Ампер — это сила тока, при которой за одну секунду через поперечное сечение проводника проходит заряд, равный одному Кулону, то есть заряд чуть больше, чем шести квинтиллионов (миллиард миллиардов) электронов.

Чтобы понять, Ампер — много это или мало, обратимся к фактам.

Ток силой в 0,05 Ампер вызывает неприятные ощущения, а ток в 0,1 Ампер может убить человека за несколько секунд. В светодиодных лампочках течёт ток в 0,02 Ампер, мобильный телефон при максимальной нагрузке потребляет до 0,5 Ампер, автомобильный аккумулятор способен выдавать несколько сотен Ампер, а ток в молнии достигает 200 000 Ампер.

Сила тока и сопротивление

Как усилить поток воды из шланга? Можно добавить напор (увеличить давление), но не слишком сильно, иначе шланг разорвёт. А можно взять шланг большего диаметра.

То же справедливо и для проводника: чем больше он в сечении, тем больший поток электронов может пропустить. Но если сила тока окажется слишком большой, проводник перегреется и сгорит.

Именно так работают плавкие предохранители в электронных приборах: при резком скачке силы тока тонкий проводок перегорает, и устройство отключается от сети.

Чем короче и шире шланг, тем большее количество воды он способен пропустить за единицу времени. Также и с электричеством: сила тока, проходящего через проводник за секунду, зависит от сопротивления проводника. Только кроме длины и площади сечения на сопротивление влияет материал, из которого проводник сделан.

Формула сопротивления выглядит так:

l — это длина проводника, S — площадь его сечения, а ρ — удельное сопротивление, у каждого материала оно своё.

Вещества с низким удельным сопротивлением называются проводниками, они проводят электричество наиболее эффективно. Вещества с высоким удельным сопротивлением называют диэлектриками — их можно использовать в качестве изоляторов. Среднее положение занимают полупроводники — они проводят электричество, но не так хорошо, как проводники.

Сопротивление измеряется в Омах. Проводник обладает сопротивлением в 1 Ом, если на его концах возникает напряжение в 1 Вольт при силе тока в 1 Ампер.

Учите физику вместе с домашней онлайн-школой «Фоксфорда»! По промокоду PHYSICS82020 вы получите бесплатный доступ к курсу физики 8 класса, в котором изучается сила тока!

Как измерить силу постоянного тока

Существует специальный прибор для измерения силы тока — амперметр. Он подключается последовательно к проводнику, в котором нужно измерить силу тока. Для этого один из концов нужного проводника отсоединяют от электрической цепи и в получившийся разрыв включают амперметр с помощью двух клемм — со знаками «+» и «−». Клемму со знаком «+» подключают к точке разрыва, которая сохранила связь с положительным полюсом источника тока.

Поскольку сила тока на всех последовательных участках цепи одинакова (он нигде не «застаивается»), амперметр можно включать как до потребителя тока, так и после.

На схемах амперметр изображается буквой «А» в круге.

Существует много разных видов амперметров, различающихся по принципу действия. Проще всего устроен тепловой амперметр. Между двумя зажимами натянута проволока, соединённая нитью с пружиной. Нить охватывает петлёй неподвижную ось со стрелкой. Когда к зажимам подаётся ток, он проходит через проволоку и нагревает её. Нагретая проволока становится немного длиннее, из-за этого нить сильнее оттягивается пружиной. При движении нить поворачивает ось, и стрелка на ней показывает, чему равна сила тока.

Современные электрики пользуются мультиметрами — приборами, которые позволяют измерить и силу тока, и напряжение, и сопротивление.

Ток, напряжение, мощность: основные характеристики электричества

Электроэнергия давно используется человеком для удовлетворения своих потребностей, но она невидима, не воспринимается органами чувств, потому сложна для понимания. С целью упрощения объяснения электрических процессов их довольно часто сравнивают с гидравлическими характеристиками движущейся жидкости.

Например, к нам в квартиру приходит по проводам электрическая энергия от далеко расположенных генераторов и вода по трубе от создающего давление насоса. Однако, отключенный выключатель не позволяет светиться лампочкам, а закрытый водопроводный кран — литься воде из крана. Чтобы совершалась работа надо включить выключатель и открыть кран.

Направленный поток свободных электронов по проводам устремится к нити накала лампочки (пойдет электрический ток) , которая станет излучать свет. Вода, вытекающая из крана, будет стекать в раковину.

Эта аналогия позволяет также понимать количественные характеристики, ассоциировать силу тока со скоростью перемещения жидкости, оценивать другие параметры.

Напряжение электросети сравнивают с потенциалом энергии источника жидкости. К примеру, возрастание гидравлического давления насосом в трубе создаст большую скорость перемещения жидкости, а увеличение напряжения (или разности между потенциалами фазы — входящего провода и рабочего нуля — отходящего) усилит накал лампочки, силу ее излучения.

Сопротивление электрической схемы сопоставляют с силой торможения гидравлическому потоку. На скорость перемещения потока влияют:

засоренность и изменение сечения каналов. (В случае с водопроводным краном — положение регулирующего вентиля.)

На величину электрического сопротивления влияет несколько факторов:

строение вещества, определяющее наличие свободных электронов в проводнике и влияющее на удельное сопротивление;

площадь поперечного сечения и длина токовода;

Электрическую мощность тоже сравнивают с энергетическими возможностями потока в гидравлике и оценивают по выполненной работе в единицу времени. Мощность электроприбора выражается через потребляемый ток и подведенное напряжение (для цепей переменного и постоянного тока).

Все эти характеристики электроэнергии исследованы известными учеными, которые дали определения току, напряжению, мощности, сопротивлению и описали математическими методами взаимные связи между ними.

В приведенной таблице показаны общие соотношения для цепей постоянного и переменного тока, которые можно применять для анализа работы конкретных схем.

Рассмотрим несколько примеров их использования.

Пример №1. Как рассчитать сопротивление и мощность

Допустим, требуется подобрать токоограничивающий резистор для блока питания схемы освещения. Нам известно напряжение питания бортовой сети «U», равное 24 вольта и ток потребления «I» в 0,5 ампера, который нельзя превышать. По выражению (9) закона Ома вычислим сопротивление «R». R=24/0,5=48 Ом.

На первый взгляд номинал резистора определен. Однако, этого недостаточно. Для надежной работы семы требуется выполнить расчет мощности по току потребления.

Согласно действию закона Джоуля — Ленца активная мощность «Р» прямо пропорционально зависит от тока «I», проходящего через проводник, и приложенного напряжения «U». Эта взаимосвязь описана формулой (11) в приведенной таблице.

Рассчитываем: Р=24х0,5=12 Вт.

Это же значение получим, если воспользуемся формулами (10) или (12).

Проведенный расчет мощности резистора по току его потребления показывает, что в выбираемой схеме надо использовать сопротивление величиной 48 Ом и 12 Вт. Резистор меньшей мощности не выдержит приложенных нагрузок, будет греться и со временем сгорит.

Этим примером показана зависимость того, как на мощность потребителя влияют ток нагрузки и напряжение в сети.

Пример №2. Как рассчитать ток

Для группы розеток, предназначенных для питания бытовых электроприборов на кухне, необходимо подобрать защитный автоматический выключатель. Мощности приборов по паспортным данным составляют 2,0, 1,5 и 0,6 кВт.

Решение. В квартире используется однофазная переменная сеть 220 вольт. Общая мощность всех приборов, подключенных в работу одновременно, составит 2,0+1,5+0,6=4,1 кВт=4100 Вт.

По формуле (2) определим общий ток группы потребителей: 4100/220=18,64 А.

Ближайший по номиналу автоматический выключатель имеет величину срабатывания 20 ампер. Его и выбираем. Автомат меньшего значения на 16 А будет постоянно отключаться от перегрузки.

Отличия параметров электросхем на переменном токе

При анализе параметров электроприборов следует учитывать особенности их работы в цепях переменного тока, когда, благодаря влиянию промышленной частоты у конденсаторов возникают емкостные нагрузки (сдвигают вектор тока на 90 градусов вперед от вектора напряжения), а у обмоток катушек — индуктивные (ток на 90 градусов отстает от напряжения). В электротехнике их называют реактивными нагрузками . Они в комплексе создают реактивные потери мощности «Q», которые не выполняют полезной работы.

На активных нагрузках отсутствует сдвиг фазы между током и напряжением.

Таким образом, к активной величине мощности электроприбора в цепях переменного тока добавляется реактивная составляющая, за счет которой увеличивается общая мощность, которую принято называть полной и обозначать индексом «S».

Переменный синусоидальный ток в однофазной сети

Электрический ток и напряжение промышленной частоты меняются во времени по синусоидальному закону. Соответственно этому происходит изменение мощности. Определять их параметры в различные мгновенные моменты времени не имеет особого смысла. Поэтому выбирают суммарные (интегрирующие) значения за определенный временной промежуток, как правило — период колебания Т.

Знание отличий параметров цепей для переменного и постоянного тока позволяет правильно рассчитывать мощность через ток и напряжение в каждом конкретном случае.

В принципе они состоят из трех одинаковых однофазных цепей, сдвинутых друг относительно друга на комплексной плоскости на 120 градусов. Они немного отличаются нагрузками в каждой фазе, сдвигающими ток от напряжения на угол фи. За счет этой неравномерности создается ток I0 в нулевом проводе.

Напряжение в этой системе состоит из напряжений в фазах (220 В) и линейных (380 В).

Мощность прибора трехфазного тока, подключенного к схеме, складывается из составляющих в каждой фазе. Ее измеряют с помощью специальных приборов: ваттметров (активная составляющая) и варметров (реактивная). Рассчитать полную мощность потребления прибора трехфазного тока можно на основе замеров ваттметра и варметра с использованием формулы треугольника.

Существует еще косвенный метод измерения, основанный на использовании вольтметра и амперметра с последующими вычислениями полученных значений.

Также можно рассчитать общий ток потребления, зная величину полной мощности S. Для этого достаточно ее разделить на величину линейного напряжения.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Единица измерения силы тока

Электрические параметры изучают в рамках школьных программ. После экзаменов быстро забываются научные определения и формулы. Между тем, базовые знания в соответствующей области нужны не только специалистам и радиолюбителям. Они пригодятся обычным пользователям для подключения бытовой техники, решения других практических задач. В этой публикации рассказано о том, что такое единица силы тока.

Об электрическом токе

Для облегчения понимания темы можно применить аналоги (сравнения) из окружающего мира. Электрические величины иногда объясняют на примере обычного трубопровода:

  • ток электронов подобен движению жидкости;
  • напряжение (разница потенциалов) – различные уровни давления;
  • при уменьшении сечения проводника увеличивается сопротивление току – таким же образом приходится повышать напор для перемещения большего количества воды за единицу времени.

Через прозрачные стенки можно наблюдать движение потока жидкости. Упростит визуальный эксперимент наличие визуальных маркеров – загрязнений. Однако самый зоркий человек не в состоянии увидеть перемещение микроскопически малых электронов.

Тем не менее, именно движение потока заряженных частиц является электрическим током. Почему такое действие даже при продолжительном времени опыта не изменяет массу (размеры) отдельных участков проводника?

Как и в случае с наблюдением, ответ на вопрос объясняется очень малой величиной рассматриваемых параметров. Электроны можно сравнить с муравьями. При переселении в другой «дом» старый муравейник сохраняет размеры (форму). Так и масса проводника не изменится заметно даже при полном удалении из него частиц с электрическими зарядами.

Что такое единица измерения силы тока

Ниже отмечены основные параметры типичной электрической цепи (в скобках приведены стандартные обозначения для формул и сокращенные наименования):

  • единицы измерения силы тока (I) – Амперы (А);
  • напряжения (U) – Вольты (В);
  • сопротивления (R) – Омы (Ом).

Для полноты изучения необходимо вспомнить о количественном показателе, мощности (W). Ее измеряют в Ваттах (Вт).

Если продолжить аналог с водой, можно сделать несколько важных промежуточных выводов. Чтобы пропустить больше жидкости (электронов) увеличивают диаметр трубы (проводника). Это решение сопровождается увеличением тока. Напряжение измеряют разницей потенциалов между двумя точками цепи. Для его увеличения изменяют нужным образом соотношение зарядов.

Сопротивление препятствует прохождению электронов. Этот процесс сопровождается преобразованием электрической энергии в тепловую. В некоторых устройствах данная особенность выполняет полезные функции.

Потребляемую мощность можно сравнить с количеством воды, которая поступает через определенное сечение транспортной системы за единицу времени.

Ампер единица измерения силы тока в СИ

По самому популярному международному стандарту (СИ) силе постоянного тока один ампер (1А) соответствует прохождение единичного заряда (1 кулон) за время 1 с:

Другое базовое определение создано с дополнительным использованием механических составляющих. В соответствии с ним, аналогичный ток создает силу взаимодействия 2*10-7 Ньютонов на каждый метр погонный конструкции, состоящей из двух параллельных проводников. Подразумевается размещение такого устройства в нейтральной среде (вакууме), полностью изолированной от внешних электромагнитных излучений.

Формулы для вычисления характеристик тока

Если к проводнику подключить источник постоянного тока, базовые параметры можно вычислить с помощью классической формулы. Ток в амперах равен напряжению в вольтах, деленному на электрическое сопротивление в омах:

Зависимость от мощности отображается следующим образом:

Простым преобразованием вычисляют другие величины:

  • R=U/I=U2/P=P/I2;
  • U= √P*R=I*R=P/U;
  • P=I2*R=U2/I=U*I.

К сведению. В цепях переменного тока учитывают синусоидальную форму сигнала. Активные нагрузки (конденсаторы, катушки) создают фазовый сдвиг между напряжением и током.

Единицы измерения в других системах единиц

Таблица, какие есть единицы измерения тока

Система единиц Полные и сокращенные обозначения Формулы перевода
СИ Ампер (А)
СГСМ Абампер (абА), био 1 био = 10 А
СГСЭ Статоампер (статА) 1 А = 2 997 924 536,8 статА

Влияние силы тока на разные материалы

Одна и та же сила тока оказывает разное влияние при прохождении через различные материалы. Металлы, например, отличаются хорошей проводимостью. Примеси повышают сопротивление, поэтому для улучшения экономических показателей линии электропередач создают из хорошо очищенной меди. Полимерные соединения – диэлектрики, их часто используют для создания изоляции.

Вода проводит электрический ток, благодаря находящимся в ней ионам. Это свойство используют для фильтрации, создания тонких покрытий и автономных источников питания. Достаточно опустить в жидкость пластины с разноименными зарядами, чтобы обеспечить перемещение частиц в противоположных направлениях.

Слабым электрическим током стимулируют мозговую деятельность, оказывают стимулирующее воздействие на кожные покровы. Специализированные аппараты применяют в медицинских учреждениях и салонах красоты. Сильный ток опасен для человека, поэтому при работе с электричеством следует применять соответствующие средства защиты.

Амперметр

Для измерения параметра используют амперметр. Этот прибор включают в разрыв цепи, чтобы обеспечить прохождение тока через рабочий элемент. Простейшие стрелочные устройства постепенно вытесняются цифровыми. Для измерения сильных токов показания снимают с помощью специального шунта, который устанавливается параллельно.

Видео

Сила тока

Сила тока с точки зрения гидравлики

Думаю, вы не раз слышали такое словосочетание, как “сила тока“. А для чего нужна сила? Ну как для чего? Чтобы совершать полезную или бесполезную работу. Главное, чтобы что-то делать. Каждый из нас обладает какой-либо силой. У кого-то сила такая, что он может одним ударом разбить кирпич в пух и в прах, а другой не сможет поднять даже соломинку. Так вот, дорогие мои читатели, электрический ток тоже обладает силой.

Представьте себе шланг, с помощью которого вы поливаете свой огород

Давайте теперь проведем аналогию. Пусть шланг – это провод, а вода в нем – электрический ток. Мы чуть-чуть приоткрыли краник и вода сразу же побежала по шлангу. Медленно, но все-таки побежала. Сила струи очень слабая.

А давайте теперь откроем краник на полную катушку. В результате струя хлынет с такой силой, что можно даже полить соседский огород.

В обоих случаях диаметр шланга одинаков.

А теперь представьте, что вы наполняете ведро. Напором воды из какого шланга вы его быстрее наполните? Разумеется из зеленого, где напор воды очень сильный. Но почему так происходит? Все дело в том, что объем воды за равный промежуток времени из желтого и зеленого шланга выйдет тоже разный. Или иными словами, из зеленого шланга количество молекул воды выбежит намного больше, чем из желтого за равный период времени.

Разберем еще один интересный пример. Давайте допустим, что у нас есть большая труба, и к ней заварены две другие, но одна в два раза меньше диаметром, чем другая.

Из какой трубы объем воды будет выходить больше за секунду времени? Разумеется с той, которая толще в диаметре, потому что площадь поперечного сечения S2 большой трубы больше, чем площадь поперечного сечения S1 малой трубы. Следовательно, сила потока через большую трубу будет больше, чем через малую, так как объем воды, который протекает через поперечное сечение трубы S2, будет в два раза больше, чем через тонкую трубу.

Что такое сила тока?

Итак, теперь давайте все что мы тут пописали про водичку применим к электронике. Провод – это шланг. Тонкий провод – это тонкий в диаметре шланг, толстый провод – это толстый в диаметре шланг, можно сказать – труба. Молекулы воды – это электроны. Следовательно, толстый провод при одинаковом напряжении можно протащить больше электронов, чем тонкий. И вот здесь мы подходим вплотную к самой терминологии силы тока.

Все это выглядит примерно вот так. Здесь я нарисовал круглый проводок, “разрезал” его и получил ту самую площадь поперечного сечения. Именно через нее и бегут электроны.

За период времени берут 1 секунду.

Формула силы тока

Формула для чайников будет выглядеть вот так:

I – собственно сила тока, Амперы

N – количество электронов

t – период времени, за которое эти электроны пробегут через поперечное сечение проводника, секунды

Более правильная (официальная) формула выглядит вот так:

Δq – это заряд за какой-то определенный промежуток времени, Кулон

Δt – тот самый промежуток времени, секунды

I – сила тока, Амперы

В чем прикол этих двух формул? Дело все в том, что электрон обладает зарядом приблизительно 1,6 · 10 -19 Кулон. Поэтому, чтобы сила тока была в проводе (проводнике) была 1 Ампер, нам надо, чтобы через поперечное сечение прошел заряд в 1 Кулон = 6,24151⋅10 18 электронов. 1 Кулон = 1 Ампер · 1 секунду.

Итак, теперь можно официально сказать, что если через поперечное сечение проводника за 1 секунду пролетят 6,24151⋅10 18 электронов, то сила тока в таком проводнике будет равна 1 Ампер! Все! Ничего не надо больше придумывать! Так и скажите своему преподавателю по физике).

Если преподу не понравится ваш ответ, то скажите типа что-то этого:

Сила тока – это физическая величина, равная отношению количества заряда прошедшего через поверхность (читаем как через площадь поперечного сечения) за какое-то время. Измеряется как Кулон/секунда. Чтобы сэкономить время и по другим морально-эстетическим нормам, Кулон/секунду договорились называть Ампером, в честь французского ученого-физика.

Сила тока и сопротивление

Давайте еще раз глянем на шланг с водой и зададим себе вопросы. От чего зависит поток воды? Первое, что приходит в голову – это давление. Почему молекулы воды движутся в рисунке ниже слева-направо? Потому, что давление слева, больше чем справа. Чем больше давление, тем быстрее побежит водичка по шлангу – это элементарно.

Теперь такой вопрос: как можно увеличить количество электронов через площадь поперечного сечения?

Первое, что приходит на ум – это увеличить давление. В этом случае скорость потока воды увеличится, но ее много не увеличишь, так как шланг порвется как грелка в пасти Тузика.

Второе – это поставить шланг бОльшим диаметром. В этом случае у нас количество молекул воды через поперечное сечение будет проходить больше, чем в тонком шланге:

Все те же самые умозаключения можно применить и к обыкновенному проводу. Чем он больше в диаметре, тем больше он сможет “протащить” через себя силу тока. Чем меньше в диаметре, то желательно меньше его нагружать, иначе его “порвет”, то есть он тупо сгорит. Именно этот принцип заложен в плавких предохранителях. Внутри такого предохранителя тонкий проводок. Его толщина зависит от того, на какую силу тока он рассчитан.

Как только сила тока через тонкий проводок предохранителя превысит силу тока, на которую рассчитан предохранитель, то плавкий проводок перегорает и размыкает цепь. Через перегоревший предохранитель ток уже течь не может, так как проводок в предохранителе в обрыве.

сгоревший плавкий предохранитель

Поэтому, силовые кабели, через которые “бегут” сотни и тысячи ампер, берут большого диаметра и стараются делать из меди, так как ее удельное сопротивление очень мало.

Сила тока в проводнике

Очень часто можно увидеть задачки по физике с вопросом: какая сила тока в проводнике? Проводник, он же провод, может иметь различные параметры: диаметр, он же площадь поперечного сечения; материал, из которого сделан провод; длина, которая играет также важную роль.

Да и вообще, сопротивление проводника рассчитывается по формуле:

формула сопротивления проводника

Таблица с удельным сопротивлением из разных материалов выглядит вот так.

таблица с удельным сопротивлением веществ

Для того, чтобы найти силу тока в проводнике, мы должны воспользоваться законом Ома для участка цепи. Выглядит он вот так:

закон Ома

Задача

У нас есть медный провод длиной в 1 метр и его площадь поперечного сечения составляет 1 мм 2 . Какая сила тока будет течь в этом проводнике (проводе), если на его концы подать напряжение в 1 Вольт?

задача на силу тока в проводнике

Как измерить силу тока?

Для того, чтобы измерить значение силы тока, мы должны использовать специальные приборы – амперметры. В настоящее время силу тока можно измерить с помощью цифрового мультиметра, который может измерять и силу тока, и напряжение и сопротивление и еще много чего. Для того, чтобы измерить силу тока, мы должны вставить наш прибор в разрыв цепи вот таким образом.

Более подробно как это сделать, можете прочитать в этой статье.

Также советую посмотреть обучающее видео, где очень умный преподаватель объясняет простым языком, что такое “сила тока”.

Сила тока

О чем эта статья:

Электрический ток

По проводам течет электрический ток. Причем он именно «течет», практически как вода. Представим, что вы — счастливый фермер, который решил полить свой огород из шланга. Вы чуть-чуть приоткрыли кран, и вода сразу же побежала по шлангу. Медленно, но все-таки побежала.

Сила струи очень слабая. Потом вы решили, что напор нужен побольше и открыли кран на полную катушку. В результате струя хлынет с такой силой, что ни один помидор не останется без внимания, хотя в обоих случаях диаметр шланга одинаков.

А теперь представьте, что вы наполняете два ведра из двух шлангов. У одного из них напор сильнее, у другого слабее. Быстрее наполнится то ведро, в которое льется вода из шланга с сильным напором. Все дело в том, что объем воды за равный промежуток времени из двух разных шлангов тоже разный. Иными словами, из зеленого шланга количество молекул воды выбежит намного больше, чем из желтого за равный период времени.

Если мы возьмем проводник с током, то будет происходить то же самое: заряженные частицы будут двигаться по проводнику, как и молекулы воды. Если больше заряженных частиц будет двигаться по проводнику, то «напор» тоже увеличится.

  • Электрический ток — это направленное движение заряженных частиц.

Сила тока

Сразу возникает потребность в величине, которой мы будем «напор» электрического тока измерять. Такая, чтобы она зависела от количества частиц, которые протекают по проводнику.

Сила тока — это физическая величина, которая показывает, какой заряд прошел через проводник.

Сила тока

I = q/t

Сила тока измеряется в Амперах. Единица измерения выбрана не просто так.

Во-первых, она названа в честь физика Андре-Мари Ампера, который занимался изучением электрических явлений. А во-вторых, единица этой величины выбрана на основе явления взаимодействия двух проводников.

Здесь аналогии с водопроводом провести, увы, не получится. Шланги с водой не притягиваются и не отталкиваются вблизи друг друга (а жаль, было бы забавно).

Когда ток проходит по двум параллельным проводникам в одном направлении, проводники притягиваются. А когда в противоположном направлении (по этим же проводникам) — отталкиваются.

За единицу силы тока 1 А принимают силу тока, при которой два параллельных проводника длиной 1 м, расположенные на расстоянии 1 м друг от друга в вакууме, взаимодействуют с силой 0,0000002 Н.

Задача

Найти силу тока в цепи, если за 2 секунды в ней проходит заряд, равный 300 мКл.

Решение:

Возьмем формулу силы тока

I = 300 мКл / 2 с = 150 мА

Ответ: сила тока в цепи равна 150 мА

Проводники и диэлектрики

Некоторые делят мир на черное и белое, а мы — на проводники и диэлектрики.

Медь, железо, алюминий, олово, свинец, золото, серебро, хром, никель, вольфрам

Воздух, дистиллированная вода, поливинилхлорид, янтарь, стекло, резина, полиэтилен, полипропилен, полиамид, сухое дерево, каучук

То, что диэлектрик не проводит электрический ток, не значит, что он не может накапливать заряд. Накопление заряда не зависит от возможности его передавать.

Направление тока

Раньше в учебниках по физике писали так: когда-то давно решили, что ток направлен от плюса к минуса, а потом узнали, что по проводам текут электроны. Но электроны эти — отрицательные, а значит к минусу идти не могут. Но раз уже условились о направлении, поэтому оставим, как есть. Вопрос тогда возникал у всех: почему нельзя поменять направление тока? Но ответ так никто и не получил.

Сейчас пишут немного иначе: положительные частицы текут по проводнику от плюса к минусу, туда и направлен ток. Здесь вопросов ни у кого не возникает.

Так и какая версия верна?

На самом деле, обе. Носители заряда в каждом типе материала разные. В металлах — это электроны, в электролитах — ионы. У каждого типа частиц свои знаки и потребность в том, чтобы бежать к противоположно заряженному полюса источника тока.

Не будем же мы для каждого типа материала выбирать направление тока, чтобы решить задачу! Поэтому принято направлять ток от плюса к минусу. В большинстве задач школьного курса направление тока роли не играет, но есть то самое коварное меньшинство, где этот момент будет очень важным. Поэтому запомните — направляем ток от плюса к минусу.

Источник тока

Вода в шланге берется из водопровода, ключа с водой в земле — в общем, не из ниоткуда. Электрический ток тоже имеет свой источник.

В качестве источника может выступить, например, гальванический элемент (привычная батарейка). Батарейка работает на основе химических реакций внутри нее. Эти реакции выделяют энергию, которая потом передается электрической цепи.

У любого источника обязательно есть полюса — «плюс» и «минус». Полюса — это его крайние положения. По сути клеммы, к которым присоединяется электрическая цепь. Собственно, ток как раз течет от «+» к «-».

Амперметр

Мы знаем, куда ток направлен, в чем измеряется сила тока, как ее вычислить, зная заряд и время, за которое этот заряд прошел. Осталось только измерить.

Прибор для измерения силы тока называется амперметр. Его включают в электрическую цепь последовательно с тем проводником, в котором ток измеряют.

Амперметры бывают очень разными по принципу действия: электромагнитные, магнитоэлектрические, электродинамические, тепловые и индукционные — и это только самые распространенные.

Мы рассмотрим только принцип действия теплового амперметра, потому что для понимания принципа действия других устройств необходимо знать, что такое магнитное поле и катушки.

Тепловой амперметр основан на свойстве тока нагревать провода. Устроен так: к двум неподвижным зажимам присоединена тонкая проволока. Эта тонкая проволока оттянута вниз шелковой нитью, связанной с пружиной. По пути эта нить петлей охватывает неподвижную ось, на которой закреплена стрелка. Измеряемый ток подводится к неподвижным зажимам и проходит через проволоку (на рисунке стрелками показан путь тока).

Под действием тока проволока немного нагреется, из-за чего удлинится, вследствие этого шелковая нить, прикрепленная к проволоке, оттянется пружиной. Движение нити повернет ось, а значит и стрелку. Стрелка покажет величину измерения.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий