Что означают Ампер час

Аккумулятор, особенности выбора, ч. 3

(Продолжение. Начало — тут , 2-я часть — тут )

Итак, прежде чем идти и покупать аккамулятор, необходимо определиться с параметрами, которым он должен соответствовать, чтобы нормально функционировать в сочетании с другим электрооборудованием автомобиля.

Основными параметрами считаются следующие:
электрическая (номинальная) емкость, А•ч;
значение пускового тока (тока стартерного разряда при регламентированном напряжении на полюсных выводах в режиме пуска двигателя автомобиля), А;
размеры корпуса АКБ;
масса АКБ.

Электрическая емкость

Электрическая емкость характеризует количество электричества, которое способна отдать АКБ при длительном режиме разряда или способность аккумулятора давать определенный ток в течение определенного времени.

Так, емкость 60 ампер-час означает, что аккумулятор может давать ток в 1 ампер в течение 60 часов (или в 2 ампера в течение 30 часов и т.д.).

Электрическая емкость батареи определяется либо при 20-часовом разряде, либо в режиме резервной емкости.
Грубо говоря, емкость – это сколько электричества «умещается» в аккумуляторе. Причем размеры (длина-ширина-высота) здесь не так важны, как особенности конструкции и, следовательно, внутренние возможности накапливать энергию.

Вообще-то, то, что пишут на этикетках европейских и отечественных АКБ – есть номинальная электрическая емкость, то есть емкость 20-часового разряда батареи. Именно она регламентируется в большинстве нормативных документов производителей (в Росии – это соответствие ГОСТу 959-91).

Для определения номинальной емкости батарею непрерывно разряжают при температуре 25°C током, равным 0,05 C20 (имеется в виду, 0,05 А от величины номинальной емкости, указанной производителем при 20-часовом режиме разряда). Получается, что для АКБ емкостью 60 А•ч ток разряда составляет 3 А, а для АКБ, емкостью 90 А•ч – 4,5 А. При определении номинальной емкости разряд прекращается, если 12-вольтовая батарея через положенные 20 часов стала длительно выдавать ток с напряжением 10,5 В.

На аккумуляторах американского производства зачастую можно прочитать такую характеристику, как резервная емкость. Между прочим, в Америке это более почитаемый параметр, чем номинальная емкость. Он показывает интервал времени (в минутах), в течение которого аккумулятор способен давать ток 25 А (т.е. в течение какого времени он сможет подменять собой вышедший из строя генератор).

Или же – это запас емкости аккумулятора, измеренный в минутах при разряде током в 25 А для батарей любой емкости при температуре 27°C. К примеру, для АКБ номинальной емкостью 55 А•ч резервная емкость может составлять 85-90 минут. Это значит, что при выходе из строя генератора, автомобиль сможет двигаться еще примерно 1,5 часа за счет энергии АКБ.

Причем, резервная емкость — время (в минутах), в течение которого аккумулятор при токе разрядки в 25 А способен поддерживать напряжение не ниже 10,5 вольт.
По американским понятиям резервная мощность – наиболее важное значение, так как показывает время, за которое можно проехать ночью при минимальной электрической нагрузке автомобиля при неработающем аккумуляторе.

Почему стоит ограничение в 10,5В, думаю, понятно: такое напряжение еще позволяет уверенно пускать двигатель стартером.

Что касается установленного времени, то когда-то был стандарт – 2 часа (считалось, что это необходимое время, чтобы среднестатистический американец смог добраться до ближайшего сервиса). Со временем число сервисов увеличилось настолько, что смысл в 2-часовом ограничении отпал, но остался непреложный принцип: чем больше, тем лучше.

Мощность аккумулятора

Пусковая мощность — величина максимальной выходной мощности, которую аккумулятор может выдавать в течение 30 секунд при температуре минус 18 градусов С. Этот показатель характеризует способность аккумулятора запускать холодный двигатель.

Но дело в том, что производитель может подгонять данный параметр под разные стандарты.
Так, российские ТУ и германский DIN – имеют более жесткую спецификацию. Она называется: стартерный режим разряда (короткий разряд).
Согласно ее при температуре электролита –18°С (холодный пуск), и при токе разряда 255 А напряжение на клеммах через 30 секунд после начала испытаний не должно быть менее 9В. Причем, при дальнейшем разряде батареи напряжение имеет право снизиться до 6 В не ранее чем через 150 секунд. Именно такая проверка энергетики гарантирует, что выдержавший ее аккумулятор обеспечит нам не менее трех-пяти полноценных попыток пуска двигателя.

Кстати, пуск – это 10 секунд работы плюс 30 секунд передышки.

Почему за отправную точку взята температура минус 18°С? Да просто в соответствии с товарными маслами за зимнюю температуру пуска бензинового двигателя принимается −20° С, а для дизельных двигателей — до −15-17°C. А посему выходит, что “средняя температура по больнице” равна примерно –18°С. При более низких температурах для дизелей уже предполагается применение средств облегчения пуска (аэрозоль, подогрев топлива, масла, воздуха и т.д.). Подобные же средства облегчения в зимних условиях могут применяться и для пуска бензиновых двигателей.

Другой, более мягкий стандарт – по SAE (США) или EN (Стандарт Евросоюза). Он называется: ток холодной прокрутки.
Специалисты, разрабатывающие этот стандарт, считают, что максимальная нагрузка на аккумулятор приходится именно в первые секунды пуска двигателя, а потом ему становится гораздо легче. Поэтому согласно данной спецификации на холодный запуск требуется нагрузка выше, чем по ТУ и DIN – около 440А. Но уже через 10 секунд такой нагрузки напряжение на клеммах не должно «просесть» ниже 7,5В, а через 30 секунд – ниже 7,2В (в предыдущих было – 9В).
Требование то же – аккумулятор в мороз должен выдержать не менее 3-х пусков (по 10 секунд работы с 30-секундными паузами).

В общем, мощность аккумулятора, характеризуемая временем стартерного разряда, показывает, как долго она сможет обеспечивать попытки запуска двигателя. Поэтому понятно, что чем больше емкость АКБ, тем больше в запасе у автовладельца попыток запустить двигатель. Но здесь есть и свои подводные камни.

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Что такое ампер-час в аккумуляторной батарее?

Потребители энергии получают определенный ток от батареи или аккумулятора. Как долго они могут работать, зависит от емкости элементов, составляющих батарею. Если нагрузка потребляет ток 1 А, он будет заряжаться 1 Ач в течение часа. Батарея 10 Ач теоретически может питать потребитель, требующий 1 А в течение 10 часов. Для того, которому требуется ток 2 А, время работы от батареи 10 Ач будет сокращено до 5 часов. Резистивные нагрузки (например лампочка) будут потреблять меньший ток при падении напряжения батареи. Потребители, оснащенные преобразователем постоянного тока, могут получать постоянную мощность даже при изменении напряжения, то есть когда напряжение питания падает, они потребляют больше тока.

Итак, давайте опустим напряжение аккумулятора и сосредоточимся только на ампер-часах для определения его емкости. Как батарея 12 В 10 Ач, так и батарея 6 В 10 Ач могут питать потребитель током 1 А в течение 10 часов, но в случае 12 В он будет использовать 12 Вт, а в случае 6 В это будет 6 Вт. Поэтому емкость батарей часто указывается в Втч, то есть батарея на 10 Вт может обеспечить током потребитель мощностью 1 Вт в течение 10 часов. Такие батареи имеют емкость в Ватт-час, соответственно батарея 12 В, 10 Ач -> 120 Вт-ч и 6 В, 10 А-ч -> 60 Вт-ч.

Напряжение, ток, мощность — что это за значения и как они связаны? Позвольте вставить немного теории.

Напряжение

Напряжение выражается в вольтах, пишется [В]. Представьте себе двух враждующих собак, которых владельцы держат на поводках. Эти собаки представляют собой группы электрических зарядов и сила, которую они тянут — это напряжение. Чем больше сила взаимодействия между ними, тем больше напряжение. Поэтому нет смысла говорить о напряженности только в одной точке — она всегда определяется между двумя точками.

Точно так же высота холмов дана над уровнем моря (то есть мера простирается между поверхностью морской воды и вершиной горы) или относительно другой точки, например города, расположенного у его подножия. В обоих случаях это одинаковые высокие части, но измеренные по-разному.

То же самое с напряжением: измеренное относительно одной точки в схеме будет иметь одно значение, а относительно другой — другое значение. Поэтому электроника приняла существование так называемой массы, то есть точки, от которой измеряем все напряжения. Мы измеряем их с помощью вольтметра, подключенного параллельно цепи к источнику напряжения.

Напряжение может существовать и «само по себе». Например покупаем батарейку 1,5 В и она имеет напряжение, близкое к номинальному напряжению между клеммами. Если оставим её лежать в шкафу, напряжение на контактах батареи будет оставаться таким-же через несколько дней, месяцев или даже лет. Со временем конечно напряжение будет уменьшаться в результате химических процессов, происходящих внутри ячейки.

Сила тока

Ток, его интенсивность указывается в амперах, пишется [A]. Это результат действия напряжения: как только две группы зарядов смогут взаимодействовать друг с другом через какой-то путь, сила тока будет описывать, как быстро они это делают. То есть сила электрического тока — это количество зарядов, протекающих по цепи в секунду. Тем не менее, никто не считает отдельные электроны, физики изобрели несколько методов для облегчения этого дела.

Ток определяется в одной точке цепи: в проводе, резисторе, аккумуляторе и так далее. Мы измеряем его с помощью амперметра, подключенного последовательно в цепи — на время измерения он имитирует кусок провода (но амперметр имеет ненулевое сопротивление, которое иногда следует принимать во внимание).

Сопротивление

Закон Ома связывает ток и напряжение в еще один элемент — сопротивление. Именно это сопротивление является путем, по которому группы зарядов могут перемещаться с одной стороны на другую. Чем оно больше, тем уже этот путь, поэтому поток медленнее (меньший ток). Единица сопротивления — Ом.

При вычислении напряжение обычно обозначают как U, ток как I, а сопротивление R. Если хотим выразить соотношение между этими переменными, то будем использовать закон Ома, а именно:

U = I * R

Например, на резисторе 100 Ом, через который протекает ток 0,1 А, будет падение напряжения:

0,1 А * 100 Ом = 10 В

Мощность

Электричество выражается в ваттах, единица измерения [Вт]. Чтобы объяснить суть, обратимся к физическому определению: это работа, выполненная за единицу времени. Таким образом, его можно рассматривать как скорость потока энергии, которая передается схеме источниками или извлекается из нее потребителями.

Ключевое слово «за единицу времени». Благодаря этому некоторые элементы способны передавать мощность в десятки киловатт, но это происходит всего за несколько микросекунд. Энергия выделяемая в это время настолько мала, что корпус элемента даже не нагревается.

В расчетах переменная для мощности обычно упоминается как P, можем соотнести мощность в электрических цепях с напряжением и током через такую формулу:

P = U * I

Используя закон Ома, можем легко преобразовать формулу в зависимость от тока и сопротивления:

P = I2 * R

Так на резисторе 100 Ом, через который протекает 0,1 А, будет выделяться мощность (в виде тепла):

0,1A * 0,1A * 100 Ом = 1 Вт

Преобразовав формулы вы можете рассчитать любой ток, например протекающий через нить накала автомобильной лампы.

На бытовых счетчиках электроэнергии есть надпись «кВт-ч» , или киловатт-час, и теперь вы знаете, что для использования энергии 1 кВт / ч необходимо подключить потребитель мощностью 1000 Вт (1 кВт) в течение часа или, например, лампочку 100 Вт в течение 10 часов.

Точно так же на аккумуляторных батареях или батареях имеется надпись, например 55 Ач, то есть теоретически емкость заряженной батареи позволяет потреблять, например, ток 1 А в течение 55 часов. А надпись на батарейке 3 Втч означает, что теоретически, 3 Вт можно получить в течение часа.

Вообще ампер-час как единица измерения давно используется для семейств АКБ с фиксированным напряжением, например, бортовых аккумуляторов в легковых автомобилях.

На заметку: свинцово-кислотная батарея предпочитает периодические нагрузки постоянному сильному разряду. Периоды отдыха позволяют батарее изменить химическую реакцию и предотвратить истощение. Вот почему свинцовая кислота хорошо работает в пусковом устройстве с короткими нагрузками в сотни ампер и достаточным временем для перезарядки между ними.

Закон Пейкерта

Для кислотных батарей действует так называемый Закон Пейкерта, который определяет зависимость доступной емкости от тока, потребляемого от ячейки. Проще говоря, чем больше тока потребляем, тем меньше эффективная мощность.

Закон Пейкерта учитывает внутреннее сопротивление и скорость восстановления батареи. Значение, близкое к единице, указывает на хорошо работающую батарею с хорошей эффективностью и минимальными потерями; большее число отражает менее эффективную батарею. Закон Пейкерта экспоненциальный — показания для свинцовой кислотной находятся в диапазоне от 1,3 до 1,5 и увеличиваются с возрастом. Температура также влияет на показания. Рисунок иллюстрирует доступную мощность в зависимости от ампер, рассчитанных с различными значениями рейтинга Пейкерта.

Например, свинцово-кислотная батарея емкостью 120 Ач, разряжаемая при 15 А, должна работать 8 часов (120 Ач делится на 15 А). Неэффективность, вызванная эффектом Пейкерта, сокращает время разряда. Чтобы рассчитать фактическую продолжительность разряда, разделите время на показатель Пейкерта, который в этом примере равен 1,3. Как видите деление времени разряда на 1,3 сокращает продолжительность с 8 до 6,15 часов.

И в продолжение темы ещё одна интересная статья по вопросу правильного выбора напряжения заряда автомобильных АКБ и возможности использовать для этого подручные БП.

Ампер-час

Ампер-час (А·ч) — внесистемная единица измерения электрического заряда, используемая главным образом для характеризации ёмкости аккумуляторов.

Исходя из физического смысла, 1 ампер-час — это электрический заряд, который проходит через поперечное сечение проводника в течение одного часа при наличии в нём тока силой в 1 ампер.

Заряженный аккумулятор с заявленной ёмкостью в 1 А·ч теоретически способен обеспечить силу тока 1 ампер в течение одного часа (или, например, 0,1 А в течение 10 часов, или 10 А в течение 0,1 часа). На практике слишком большой ток разряда аккумулятора приводит к менее эффективной отдаче электроэнергии, что нелинейно уменьшает время его работы с таким током и может приводить к перегреву.

На практике же емкость аккумуляторов приводят исходя из 20-часового [источник не указан 186 дней] цикла разряда до конечного напряжения. Для автомобильных аккумуляторов оно составляет 10,8 В [источник не указан 186 дней] . Например, надпись на маркировке аккумулятора «55 А·ч» означает, что он способен выдавать ток 2,75 ампер на протяжении 20 часов, и при этом напряжение на клеммах не опустится ниже 10,8 В.

Часто также применяется производная единица миллиампер-час (мА·ч), которая используется обычно для обозначения ёмкости небольших аккумуляторов.

Величину в ампер-часах можно перевести в системную единицу измерения заряда — кулон. Поскольку 1 Кл/c равен 1 А, то, переведя часы в секунды, получаем, что один ампер-час будет равен 3600 Кл.

Содержание

Перевод в ватт-часы

Часто производители аккумуляторов указывают в технических характеристиках только запасаемый заряд в мА·ч (mAh), другие — только запасаемую энергию в Вт·ч (Wh). Обе характеристики могут называть словом «ёмкость». Вычислить запасаемую энергию по запасаемому заряду в общем случае непросто: требуется интегрирование мгновенной мощности, выдаваемой аккумулятором за всё время его разряда. Если большая точность не нужна, можно вместо интегрирования воспользоваться средними значениями напряжения и потребляемого тока и воспользоваться формулой:

Тогда запасаемая энергия приблизительно равна произведению запасаемого заряда на среднее напряжение:

E = q · U .

Пример

В технических спецификациях устройства указано, что мощность аккумулятора равна 5600 мА·ч, напряжение работы равно 15 В. Тогда мощность в ватт-часах равна (5600/1000)·15 = 84 Вт·ч.

См. также

Литература

  • Г. Д. Бурдун, В. А. Базакуца. Единицы физических величин. Справочник — Харьков: Вища школа, 1984

  • Добавить иллюстрации.
  • Проставив сноски, внести более точные указания на источники.
  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.

Wikimedia Foundation . 2010 .

  • Панчулидзев, Алексей Давыдович
  • Аттанасио, Орацио

Смотреть что такое “Ампер-час” в других словарях:

АМПЕР-ЧАС — внесистемная единица количества электричества, равная 3600 Кл. Обозначается А. ч. В ампер часах обычно выражают заряд аккумуляторов … Большой Энциклопедический словарь

АМПЕР-ЧАС — (Ampere hour) единица количества электричества, равная 3600 ампер секунд или кулонов. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь

ампер-час — ампер час, ампер часа … Орфографический словарь-справочник

АМПЕР-ЧАС — (А•ч, A•h), внесистемная ед. кол ва электричества, равная 3600 Кл. В А.•ч. обычно выражают заряд аккумуляторов. Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

ампер-час — сущ., кол во синонимов: 1 • единица (830) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

ампер-час — А•ч — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва] Тематики электротехника, основные понятия Синонимы А•ч EN ampere hourah … Справочник технического переводчика

ампер-час — внесистемная единица количества электричества, равная 3600 Кл. Обозначается ампер час. В ампер часах обычно выражают заряд аккумуляторов. * * * АМПЕР ЧАС АМПЕР ЧАС, внесистемная единица количества электричества, равная 3600 Кл. Обозначается А. ч … Энциклопедический словарь

ампер-час — ampervalandė statusas T sritis automatika atitikmenys: angl. ampere hour vok. Amperestunde, f rus. ампер час, m pranc. ampère heure, m … Automatikos terminų žodynas

ампер-час — ampervalandė statusas T sritis Standartizacija ir metrologija apibrėžtis Elektros kiekio arba elektros krūvio matavimo vienetas, išreiškiamas elektros srovės stiprio (A) ir srovės tekėjimo trukmės (h) sandauga: 1 A · h = 3,6 kC; taikomas… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

ампер-час — ampervalandė statusas T sritis fizika atitikmenys: angl. ampere hour vok. Amperestunde, f rus. ампер час, m pranc. ampère heure, m … Fizikos terminų žodynas

Ампер-часы в аккумуляторе: что это такое?

Время автономной работы мобильного телефона, портативного инструмента или способность отдавать ток стартёру при пуске двигателя автомобиля – все это зависит от такой характеристики АКБ, как ёмкость. Она измеряется в ампер-часах или в миллиампер-часах. По величине ёмкости можно судить о том, сколько времени аккумулятор будет питать электрической энергией то или иное устройство. От неё зависит, как время разряда и заряда аккумулятора. При выборе аккумуляторной батареи для того или иного устройства полезно знать, что обозначает эта величина в ампер-часах. Поэтому сегодняшний материал будет посвящён такой характеристике, как ёмкость и её размерности в ампер-часах.

О ёмкости аккумулятора и почему ампер часы?

Вообще, ампер-час представляет собой внесистемную единицу электрического заряда. Её основное использование – это выражение ёмкости аккумуляторов.

Один ампер-час представляет собой электрический заряд, проходящий за 1 час через поперечное сечение проводника при пропускании тока 1 ампер. Можно встретить значения в миллиампер-часах.

Как правило, такое обозначение применяется для указания ёмкости аккумуляторов в телефонах, планшетах и других мобильных гаджетах. Давайте посмотрим, что значит ампер-час на реальных примерах.

Ёмкость автомобильного аккумулятора

Исходя из вышесказанного, 62 Ач говорит нам о том, что этот аккумуляторная батарея способна на протяжении 20 часов отдавать ток 3,1 ампера. При этом напряжение на выводах батареи не опустится ниже 10,8 вольта.

Ёмкость аккумулятора ноутбука

Нужно ещё добавить, что системной единицей электрического заряда является кулон. Кулон связан с ампер-часами следующим образом. Один кулон в секунду равен 1 ампер. Следовательно, если перевести секунды в часы получится, что 1 ампер-час равен 3600 кулон.
Вернуться к содержанию

Как связаны ёмкость аккумулятора (ампер-час) и его энергия (ватт-час)?

Многие производители на своих аккумуляторах не указывают ёмкость в ампер-часах, а вместо этого ставят значение запасаемой энергии в ватт-часах. Такой пример показан на фотографии ниже. Это аккумулятор смартфона Samsung Galaxy Nexus.

Запасаемая энергия аккумулятора в ватт-часах

Тогда для аккумулятора Galaxy Nexus получаем:

6,48 ватт-часа / 3,7 вольта = 1,75 ампер-часа или 1750 миллиампер-час.

Вот так можно выяснить номинальную ёмкость аккумулятора по запасаемой энергии и напряжению. Читайте также о том, как проверить емкость аккумулятора телефона.

Какие ещё есть разновидности ёмкости аккумулятора

Существует такое понятие, как энергетическая ёмкость аккумулятора. Она показывает способность АКБ разряжаться определённый временной интервал с постоянной мощностью. Временной интервал в случае автомобильных аккумуляторных батарей обычно устанавливают 15 минут. Энергетическую ёмкость первоначально стали измерять в Северной Америке, но затем к этому подключились производители АКБ в других странах. Её значение можно получить в ампер-часах по следующей формуле:

Е (Ач) = W (Вт/эл) / 4, где

Е – энергетическая ёмкость в ампер-часах;

W – мощность при 15 минутном разряде.

Есть и ещё одна разновидность, которая пришла к нам из США, это резервная ёмкость. Она показывает способность АКБ питать бортовую движущейся машины при неработающем генераторе. Проще говоря, можно узнать, сколько аккумулятор даст вам проехать на машине, если генератор выйдет из строя. Рассчитать эту величину в ампер-часах можно по формуле:

Е (ампер-часы) = T (минуты) / 2.

Важно отметить следующий момент. Величина ёмкости, наносимая на аккумуляторах, вычисляется при определённых условиях. Чаще всего это разряд в течение 10 и 20 часов. То есть, 55 Ач означает, что АКБ можно 10 часов разряжать током 5,5 ампера. Но это вовсе не означает, что батарею можно 1 час разряжать током 55 ампер. Если увеличивать разрядный ток, то время разряда снижается в соответствии со степенной зависимостью. Подробнее об этом мы писали в статье о ёмкости автомобильного аккумулятора.

Как узнать, сколько реально ампер-часов в вашем аккумуляторе?

Рассмотрим процесс проверки ёмкости на примере автомобильного аккумулятора. Но такой разряд под контролем можно сделать для любой батареи. Будут отличаться только измеряемые величины.

Для того чтобы проверить реальные ампер-часы своего аккумулятора, нужно полностью его зарядить. Степень заряженности проконтролируйте по плотности электролита. Полностью заряженная АКБ должна иметь плотность электролита 1,27─1,29 гр./см 3 . Затем нужно собрать схему, показанную на следующем рисунке.

Схема для контрольного разряда аккумулятора

E – номинальная ёмкость батареи,

T – 10 или 20 часов.

Этот процесс требует постоянного контроля напряжения на выводах АКБ. Как только напряжение упадёт до 10,8 вольта (1,8 на банке), разряд нужно остановить. Время, за которое аккумулятор разрядился, вы умножаете на ток разряда. Получается реальная ёмкость батареи в ампер-часах.

Если у вас нет резистора, то можете использовать автомобильные лампочки (12 вольт) подходящей ёмкости. Мощность лампочки подбираете в зависимости от того, какой разрядный ток вам нужен. То есть, если нужен ток разряда 2 ампера, то мощность будет 12 вольт умножить на 2 ампера. Итого 24 ватта.

Разрядка аккумулятора автомобильными лампочками

Как выбрать ёмкость аккумулятора?

Для автомобилей аккумулятор можно подобрать по объёму двигателя. В таблице ниже можно посмотреть соответствие объёма двигателя ёмкости аккумулятора.

Ёмкость аккумулятора, А-ч Транспортное средство Объем двигателя, л
55 легковые автомобили 1 – 1,6
60 легковые автомобили 1,3 – 1,9
66 легковые автомобили (кроссоверы, внедорожники) 1,4 – 2,3
77 грузовые автомобили малой грузоподъемности 1,6 – 3,2
90 грузовые автомобили средней грузоподъемности 1,9 – 4,5
140 грузовые автомобили 3,8 – 10,9
190 спецтехника (экскаваторы, бульдозеры) 7,2 – 12
200 грузовые автомобили (фуры, автопоезда) 7,5 – 17
Ёмкость аккумулятора, А-ч Транспортное средство Объем двигателя, л

Для легкового автомобиля класс седан или хэтчбек вполне хватит аккумуляторов ёмкостью 50─65 ампер-часов. Для внедорожников и крупных кроссоверов подойдут АКБ 70─95 ампер-часов. Если у вас автомобиль с дизельным двигателем и (или) большим числом потребителей тока в бортовой сети, то стоит взять аккумулятор с номинальной ёмкостью на 10─15 ампер-часов больше вышеназванных цифр.

Небольшой запас пригодиться и в зимнее время, когда из-за снижения температуры АКБ теряет часть своей ёмкости. Есть эмпирическая зависимость, согласно которой при снижении температуры ОС от 20 С на один градус аккумулятор теряет 1 ампер-час.

Что такое Ампер-часы в аккумуляторе и как их перевести в Ватт-часы?

Всем привет. Автономность работы ноутбука, мобильного телефона, источника бесперебойного питания -зависит от параметра аккумулятора, именуемой ёмкостью. Измеряется она в миллиампер-часах: mAh или мАч. Для АКБ маломощных устройств или ампер часах: Ah или Ач. Узнав, какой ёмкостью обладает АКБ, можно подвести черту к времени запитывания аккумулятором электроэнергии для потребляемого устройства. Об этом мы и поговорим в статье.

  1. Почему измерение ёмкости проводится в ампер часах?
  2. Пример расчета выдаваемого тока в автомобильном АКБ
  3. Перевод в Вт/ч
  4. Применение АКБ
  5. Что происходит в период эксплуатации?

Почему измерение ёмкости проводится в ампер часах?

Что такое «Ампер в час»? – это единица измерения электрического заряда, основное назначение которое выражается ёмкостью АКБ. Внесистемной единице можно дать логическое объяснение.

СПРАВКА! Одним «Ач» считается заряженный электрон, что проходит на протяжении одного часа сквозь площадь металлического проводника при пропускании тока в 1 Ампер.

То есть теоретически – полностью заряженная батарея с ёмкостью в 1000 мАч готова демонстрировать силу тока в 1 А в течении 1 ч. Если потребуется ток 10А, то АКБ сможет выдать его в течении 0,1 ч. Если нужен ток в 0,2 А, батарея будет выдавать его за 5 часов. Логика перевода здесь ясно прослеживается.

В малогабаритных аккумуляторах для удобства счисления используют значение миллиампер в час. В редких случаях используют микроампер в час. Этими АКБ оснащаются малые устройства – в основном электроника.

В реалиях ёмкость батареи приводят, опираясь на двадцатичасовой цикл разряда до «Minimum»-значения «Umin» – тот параметр, до которого лучше не доводить перезаряжаемую батарею.

Рассмотрим на реальных примерах, что значит значение ёмкости.

Пример расчета выдаваемого тока в автомобильном АКБ

В авто используют увесистые аккумуляторы с большой емкостью. Например, ёмкость аккумулятора 6CT-62N равна 62 Ач. Из этого значения можно рассчитать силу тока, которая будет разряжать устройство равномерно до конечного напряжения. В автомобиле оно равно 10,8 В. Измерения делаются исходя из исходных данных:

  1. Ёмкость – 62 Ач.
  2. Время разряда – 20 часов.
  3. Рабочее U – 12 В.
  4. Конечное напряжение – 10,8 В.

Чтобы узнать, какой ток способен выдавать аккумулятор на протяжении 20 часов, следует:

Дополнительно, перевести ёмкость Ач можно в единицу измерения – кулон. 1 Кл/с = 1 А, или 1 Ач = 3600 Кл.

Перевод в Вт/ч

Изготовителей аккумуляторных батарей условно необходимо поделить на две касты:

  1. Первые указывают «запасаемый заряд» (в ампер/часах) аккумулятора.
  2. Вторые пишут «запасаемую энергию» в Втч.

Самое интересное, эти единицы измерения указывают на ёмкость аккумулятора. Для измерения максимально точного значения ёмкости путем перевода Втч в Ампер часов, необходимо провести математический расчет с использованием интегралов от показателя мгновенной мощности, которое выдает перезаряжаемая батарея при разряде.

Но если рассчитать нужно приблизительно, можно оперировать средними показателями напряжения и используемого тока, приведя все данные к такому знаменателю:

Если приплюсовать сюда время, выйдет:

Расшифровка формулы следующая – запасаемая энергия (ватт-час) с допустимой погрешностью равна произведению запаса заряда (Ампер часы в аккумуляторе) на напряжение (В, среднее).

Е=q*U

E=q*U*3600

Если Вт конвертировать в Дж.

Вернемся к примеру, с АКБ, который необходим для стартера. В нем сказано, что запасаемые заряд равен 62 Ач, рабочее напряжение – 12 В.

Ёмкость (запасаемая энергия) с допустимой погрешностью равняется:

62 Ач * 12 В = 744 Втч = 744 Втч*3600 = 2,678 МДж.

Применение АКБ

Есть множество типов аккумуляторов, которые используют в различных гаджетах, направлениях и системах:

  1. В энергетике, подстанциях телекоммуникационного оборудования, в качестве аварийного источника питания железнодорожных переездов применяются стационарные свинцовые аккумуляторы.
  2. Для питания шахтерских подъемников, средств связи, для запуска дизельных станций и двигателей авиации применяют Никель-кадмиевые АКБ.
  3. Для автономного питания портативных приборов используют Никель-металлогидридные АКБ.
  4. Портативные устройства, типа мобильного телефона, колонок, камер питаются с помощью Li-ion аккумуляторов.
  5. Некоторые портативные гаджеты могут снабжаться литий-полимерными АКБ. Их обычно позиционируют с повышенной безопасностью и увеличенным ресурсом, по сравнению с Li-ion.

Уже несколько десятилетий подряд Li-ion АКБ считаются наилучшими для небольших устройств из-за быстрого заряда, большей ёмкости в соизмерении с размером, имеют меньший вес и более долгий срок службы.

Что происходит в период эксплуатации?

К сожалению, со временем, все перезаряжаемые батареи проходят через процессы химического старения. В следствии этого, ёмкость постепенно уменьшается, что приводит к необходимости частого заряда. В дополнение к такому процессу может снижаться максимальная мгновенная производительность АКБ (ее еще называют пиковой).

Чтобы прибор с перезаряжаемой батареей корректно работало, все электрозависимые компоненты должны незамедлительно получать доступ к электропитанию.

Главным фактором, влияющим на мгновенную передачу заряда АКБ есть его полное сопротивление. Если оно высокое, то перезаряжаемая батарея не всегда сможет отдавать тот заряд, которой требуется для качественной работы прибора. Из-за этого оно может не запускаться или прекратить работать. Полное сопротивление АКБ может увеличиваться:

  1. На постоянной основе при химическом старении.
  2. Краткосрочно при низком уровне заряда.
  3. Временно при малых и отрицательных температурах воздуха.

Если же порог минимального напряжения для работы АКБ будет преодолён при увеличении сопротивления (то есть станет меньшим количество выдаваемых мАч) – автономная работа устройства поддерживаться не сможет.

Что такое ампер-час

Ампер-час (сокращенное обозначение а • ч) является единицей измерения электрической емкости гальванического элемента или аккумулятора.

Что же представляет собой эта единица измерения и почему она так называется?

Ампер (сокращенное обозначение а), как известно, является единицей измерения силы электрического тока. Под электрическим током подразумевается движение электричества (упорядоченное движение электронов) по проводнику. Чем большее количество электричества протекает через поперечное сечение проводника в секунду, тем больше ток в проводнике. Для измерения количества электричества имеется специальная единица — кулон (сокращенное обозначение к). Один кулон содержит вполне определенное количество электричества. Если через поперечное сечение проводника протекает в одну секунду один кулон электричества, то величина тока в этом проводнике равна одному амперу» Следовательно, по величине тока можно легко определить, какое количество электричества протекло по проводнику в течение любого времени.

Если при токе в 1 а в каждую секунду протекает через проводник 1 к электричества, то в течение 1 мин при том же токе будет протекать 60 к (1 кх60 сек), а в течение часа — 3 600 к. Таким образом, мы можем сказать, что 1 ампер-час равен 60 ампер-минутам, или 3 600 ампер-секундам, или 3 600 кулонам.
Как видим, электрическую емкость можно было бы выражать и в кулонах, но кулон является очень небольшой единицей и поэтому ею неудобно пользоваться на практике: пришлось бы иметь дело с очень большими числовыми выражениями.
Поэтому для практических измерений электрической емкости принята более крупная единица— ампер-час. В этих единицах всегда выражается емкость гальванических элементов и аккумуляторов.

Удобство пользования ампер-часом в качестве единицы измерения электрической емкости заключается еще и в том, что простым перемножением величины разрядного тока (выраженной в амперах) на время разряда (выраженное в часах) сразу определяется количество отданного элементом электричества. Допустим, что элемент разряжался в течение 100 час. током в 0,1 а. Следовательно, за это время элемент отдал количество электричества, соответствующее емкости 0,1X100=10 а-ч. Так мы всегда можем подсчитать, какую емкость отдал элемент, питавший лампы радиоприемника в продолжение всего времени своей работы.

У радиолюбителей может возникнуть вопрос: а каким образом определяют емкость элементов при их изготовлении на заводе, т. е. до их разряда?
Чтобы ответить на этот вопрос, вспомним, что причиной возникновения электрической энергии в элементе является растворение цинка во время электрохимической реакции, происходящей внутри элемента.

Знаменитым ученым Фарадеем был установлен закон, который гласит, что определенному количеству растворенного во время электрохимической реакции вещества соответствует строго определенное количество образовавшегося электричества и что это количество электричества зависит от природы растворенного вещества.

То количество вещества, какое необходимо растворить во время электрохимической реакции для получения одного кулона электричества, называется электрохимическим эквивалентом данного вещества.

Дли разных веществ величина электрохимического эквивалента будет различная, но строго определенная. Например» электрохимический эквивалент цинка равен 0,341, меди 0,329, серебра 1,118 мг (миллиграмма) и т. д.

Таким образом, чтобы получить 1 к электричества, необходимо растворить во время электрохимической реакции 0,341 мг цинка. Отсюда ясно, что для получения электричества в количестве 1 а – ч, равного 3 600 /с, теоретически нужно растворить цинка
0,341 . 3 600 = 1 228 мг – 1,228 г.
На практике расход цинка на один ампер-час получается в несколько раз больший. Объясняется это, во-первых, невозможностью полностью использовать весь цинк в элементе, поскольку по мере растворения отрицательного электрода начинает возрастать внутреннее сопротивление элемента. Поэтому, когда .растворится примерно половина или несколько больше половины цинка, элемент становится уже неработоспособным и считается окончательно разряженным. Во-вторых, не весь цинк, из которого состоит электрод, принимает участие в электрохимической реакции.

Повышенный расход цинка объясняется еще и тем, что он всегда содержит некоторое количество вредных примесей, как, например, железо или свинец. Такие примеси вместе с цинком образуют в самом электроде маленькие элементики, внутри которых все время будет протекать ток. Следовательно, в этих местах отрицательного электрода все время будет происходить растворение цинка независимо от того, замкнут или разомкнут сам элемент. Поэтому примеси являются одной из основных причин повышенного расхода цинка и электролита, увеличивают саморазряд гальванического элемента и вызывают резкое снижение его емкости и срока хранения.

Учитывая все эти факторы, завод может заранее определить, сколько нужно взять цинка, а также электролита и деполяризатора, чтобы собрать элемент определенной емкости.

Нужно иметь в виду, что емкость элементов не является величиной строго постоянной. Наоборот, она может значительно меняться в ту и другую сторону в зависимости от величины и разрядного тока, конечного разрядного напряжения, а также от способа разряда — непрерывного или прерывистого.

В заводском паспорте каждого элемента указывается величина сопротивления нагрузки, через которое рекомендуется разряжать данный элемент. Разделив напряжение элемента на это сопротивление, мы определим допустимую величину разрядного тока данного элемента. Однако при этом нужно учитывать еще и внутреннее сопротивление элемента. Если разряжать совершенно свежий элемент таким током вплоть до напряжения 0,7 в, то, по заводским данным, элемент отдаст полную свою емкость.

От элемента можно, конечно, потреблять ток и значительно больший, чем нормальный, в особенности при прерывистом разряде, но в этом случае элемент имеет меньшую емкость. Наоборот, если разряжать элемент током меньше предельного, притом с частыми и продолжительными перерывами, то он будет иметь емкость, несколько большую гарантируемой заводом.

На рис. 1 приведена кривая, показывающая изменение величины емкости в зависимости от разрядного тока у обычного сухого элемента при разряде его до одного и того же конечного напряжения. Как видно, с увеличением разрядного тока емкость значительно уменьшается. Так, например, если при разрядном токе в 0,1 а емкость элемента составляет 50 а ч, то при увеличении разрядного тока в два раза емкость уменьшается почти до 40 а • ч, а при токе в 0,5 а она снижается до 30 а ч что составляет лишь половину паспортной емкости элемента.

Такую картину мы наблюдаем при разряде элемента до конечного напряжения 0,7 в.
К сожалению, применяя гальванические элементы для питания радиоприемника, вообще невозможно использовать их полную емкость, потому что в этих условиях эксплуатации можно разрядить элементы только до 0,9 в; при падении рабочего напряжения у каждого элемента ниже 0,9 в батарею уже приходится заменять новой. Между тем если элементы будут разряжаться током предельной силы, то рабочее напряжение у них может сравнительно быстро упасть ниже 0,9 в и поэтому их придется заменить новыми, не использовав и половины их емкости.

Наглядной иллюстрацией сказанного может служить рис. 2, на котором приведена кривая изменения рабочего напряжения при непрерывном разряде сухого элемента с марганцево-воздушной деполяризацией. Элемент разряжался током, указанным в заводском паспорте, до конечного напряжения 0,7 е.

Как видно из этой кривой, уже на десятые сутки рабочее напряжение у элемента стало меньше 0,9 в, а примерно на 17-е сутки оно снизилось до 0,8 в и дальше кривая напряжения идет почти на этом же уровне, медленно снижаясь до 0,7 в.

Таким образом, при беспрерывном разряде элемента током, указанным в его заводском паспорте, уже после использования одной трети емкости рабочее напряжение у элемента падает ниже 0,9 в. Поэтому остальную емкость мы не можем использовать для питания радиоприемника. Правда, при прерывистом разряде (а именно в таком режиме всегда и работают элементы, питающие радиоприемник) рабочее напряжение у элемента будет значительно дольше удерживаться на уровне 0,9 в и, следовательно, величина емкости может быть заметно больше. Однако, если элемент будет работать с большой перегрузкой, то и при этих условиях рабочее его напряжение может сравнительно быстро упасть ниже критической величины, т. е- ниже 0,9 е. Вот почему, используя гальванические элементы для питания радиоприемников, невыгодно разряжать их предельным током. При составлении батареи накала лучше взять на одну группу элементов больше, чем заставлять батарею работать с перегрузкой.

Например, для приемника «Родина» можно составить батарею накала из двух параллельных групп элементов 6С МВД или блоков БНС-100. Обе эти батареи, конечно^ будут питать лампы приемника, но такая нагрузка для них будет чрезмерной, в особенности для блоков БНС-100, емкость которых значительно меньше емкости элементов 6С МВД.

Поэтому выгоднее и в первом и во втором случаях батарею составлять из трех-четырех параллельных групп элементов, не взирая на то, что по заводским данным от этих элементов можно потреблять ток до 250 ма.

Все сказанное здесь относительно емкости гальванических элементов в одинаковой мере относится и к анодным батареям. Убедительнее всего это подтверждает рис. 3, на котором приведены четыре кривые, характеризующие изменение величины емкости одной и той же батареи БАС-80 при разряде ее различными токами и до разных конечных напряжений.

Для большей наглядности сравним показания крайних характеристик (кривые верхняя и нижняя). Первая снята для случая наиболее глубокого разряда батареи (до напряжения 48 б), а вторая — для случая минимального разряда (до напряжения 70 в).

Из сопоставления их видим, что при одной и той же величине тока, допустим. 10 мау в первом случае батарея имеет емкость 1 а- чу а во втором — только 0,5 а ч. Этот пример показывает, насколько важно для получения большей емкости, а следовательно, и для продления срока службы батареи добиться возможности разряда ее до более низкого конечного напряжения и при нормальной величине тока.

При использовании гальванических батарей для питания радиоприемников редко соблюдается первое требование. Обычно радиолюбители для питания анодов ламп приемника применяют одну батарею напряжением 80 в. При таком напряжении приемник вначале работает удовлетворительно. Однако при понижении напряжения батареи до 70—65 в громкость и качество приема падают. Радиолюбитель считает, что анодная батарея уже полностью разрядилась, и поэтому заменяет ее новой, не использовав доброй половины ее емкости-Между тем нужно лишь присоединить последовательно к такой полуразряженной батарее дополнительную батарею с напряжением 20 или 40 в, и тогда первая батарея может еще работать до наступления полного разряда, т. е. до напряжения 48—42 в. Только после этого разрядившуюся батарею выключают. При этом дополнительная батарея может быть еще использована.

Не следует также к приемнику, нормально требующему, допустим, анодного напряжения 120 в, присоединять полностью две 80-вольтовые батареи, соединенные последовательно и дающие напряжение 160 в. При таком повышенном напряжении, во-первых, нарушается рабочий режим ламп, а, во-вторых, сильнее разряжаются батареи. В таких случаях выгоднее поступать так: вначале включить в приемник только полторы батареи, а затем, после понижения ее напряжения, подсоединить к ней и резервную половину второй батареи. Когда у такой батарей напряжение понизится до 85—80 в, то обе батареи окажутся разряженными полностью и их придется заменить новыми.

Применяя такое комбинированное соединение батарей, можно добиться максимального использования их емкостей. У большинства батарей типа БАС имеются промежуточные выводы (от середины или одной трети батареи), что позволяет легко осуществлять различные варианты соединения между собой двух или нескольких батарей для получения разной величины напряжения.

Итак, мы видим, что недостаточно знать величину емкости элемента или батареи, но нужно еще уметь возможно полнее использовать эту емкость для питания радиоприемника.

  • 51
  • 1
  • 2
  • 3
  • 4
  • 5

Спижевский И.И., Бурлянд В.А. – Хрестоматия радиолюбителя 1957

Понравилась статья? Поделиться с друзьями:
Добавить комментарий