Что происходит на аноде

Электролиз расплавов и растворов

Теория к заданию 22 из ЕГЭ по химии

Электролиз расплавов и растворов (солей, щелочей)

Если в раствор или расплав электролита опустить электроды и пропустить постоянный электрический ток, то ионы будут двигаться направленно: катионы к катоду (отрицательно заряженному электроду), анионы к аноду (положительно заряженному электроду).

На катоде катионы принимают электроны и восстанавливаются, на аноде анионы отдают электроны и окисляются. Этот процесс называют электролизом.

Электролиз — это окислительно-восстановительный процесс, протекающий на электродах при прохождении электрического тока через расплав или раствор электролита.

Электролиз расплавленных солей

Рассмотрим процесс электролиза расплава хлорида натрия. В расплаве идет процесс термической диссоциации:

Под действием электрического тока катионы $Na^<+>$ движутся к катоду и принимают от него электроны:

Анионы $Cl^<->$ движутся к аноду и отдают электроны:

Суммарное уравнение процессов:

На катоде образуется металлический натрий, на аноде — газообразный хлор.

Главное, что вы должны помнить: в процессе электролиза за счет электрической энергии осуществляется химическая реакция, которая самопроизвольно идти не может.

Электролиз водных растворов электролитов

Более сложный случай — электролиз растворов электролитов.

В растворе соли, кроме ионов металла и кислотного остатка, присутствуют молекулы воды. Поэтому при рассмотрении процессов на электродах необходимо учитывать их участие в электролизе.

Для определения продуктов электролиза водных растворов электролитов существуют следующие правила:

1. Процесс на катоде зависит не от материала, из которого сделан катод, а от положения металла (катиона электролита) в электрохимическом ряду напряжений, при этом если:

1.1. Катион электролита расположен в ряду напряжений в начале ряда по $Al$ включительно, то на катоде идет процесс восстановления воды (выделяется водород $Н_2↑$). Катионы металла не восстанавливаются, они остаются в растворе.

1.2. Катион электролита находится в ряду напряжений между алюминием и водородом, то на катоде восстанавливаются одновременно и ионы металла, и молекулы воды.

1.3. Катион электролита находится в ряду напряжений после водорода, то на катоде восстанавливаются катионы металла.

1.4. В растворе содержатся катионы разных металлов, то сначала восстанавливается катион металла, стоящий в ряду напряжений правее.

Катодные процессы

$Li K Ca Na Mg Al$
$Li^ <+>K^ <+>Ca^ <2+>Na^ <+>Mg^ <2+>Al^<3+>$
$Mn Zn Fe Ni Sn Pb$
$Mn^ <2+>Zn^ <2+>Fe^ <2+>Ni^ <2+>Sn^ <2+>Pb^<2+>$
$H_2$
$2H^<+>$
$Cu Hg Ag Pt Au$
$Cu^ <2+>Hg_2^ <2+>Ag^ <+>Pt^ <2+>Au^<3+>$
Восстанавливается вода:
$2H_2O+2ē=H_2↑+2OH^<−>;$
$M^$ не восстанавливается
Восстанавливаются катионы металла и вода: $M^+nē=M^0$
$2H_2O+2ē=H_2↑+2OH^<−>$
Восстанавливаются катионы металла: $M^+nē=M^0$
$nē→$
Усиление окислительных свойств катионов (способности принимать электроны)

2. Процесс на аноде зависит от материала анода и от природы аниона.

Анодные процессы

Кислотный остаток $Ас^$ Анод
Растворимый Нерастворимый
Бескислородный Окисление металла анода
$M^<−>−nē=M^$
анод раствор
Окисление аниона (кроме $F^<–>$)
$Ac^−mē=Ac^0$
Кислородсодержащий В кислотной и нейтральной средах:
$2H_2O−4ē=O_2↑+4H^<+>$
В щелочной среде:
$4OH^<−>−4ē=O_2↑+4H^<+>$

2.1. Если анод растворяется (железо, цинк, медь, серебро и все металлы, которые окисляются в процессе электролиза), то окисляется металл анода, несмотря на природу аниона.

2.2. Если анод не растворяется (его называют инертным — графит, золото, платина), то:

а) при электролизе растворов солей бескислородных кислот (кроме фторидов) на аноде идет процесс окисления аниона;

б) при электролизе растворов солей кислородсодержащих кислот и фторидов на аноде идет процесс окисления воды (выделяется $О_2↑$). Анионы не окисляются, они остаются в растворе;

в) анионы по их способности окисляться располагаются в следующем порядке:

Попробуем применить эти правила в конкретных ситуациях.

Рассмотрим электролиз раствора хлорида натрия в случае, если анод нерастворимый и если анод растворимый.

1) Анод нерастворимый (например, графитовый).

В растворе идет процесс электролитической диссоциации:

Учитывая присутствие ионов $Na^<+>$ в растворе, составляем молекулярное уравнение:

2) Анод растворимый (например, медный):

Если анод растворимый, то металл анода будет окисляться:

Катионы $Cu^<2+>$ в ряду напряжений стоят после ($Н^<+>$), по этому они и будут восстанавливаться на катоде.

Концентрация $NaCl$ в растворе не меняется.

Рассмотрим электролиз раствора сульфата меди (II) на нерастворимом аноде:

Суммарное ионное уравнение:

Суммарное молекулярное уравнение с учетом присутствия анионов $SO_4^<2->$ в растворе:

Рассмотрим электролиз раствора гидроксида калия на нерастворимом аноде:

Суммарное ионное уравнение:

Суммарное молекулярное уравнение:

В данном случае, оказывается, идет только электролиз воды. Аналогичный результат получим и в случае электролиза растворов $H_2SO_4, NaNO_3, K_2SO_4$ и др.

Электролиз расплавов и растворов веществ широко используется в промышленности:

  1. Для получения металлов (алюминий, магний, натрий, кадмий получают только электролизом).
  2. Для получения водорода, галогенов, щелочей.
  3. Для очистки металлов — рафинирования (очистку меди, никеля, свинца проводят электрохимическим методом).
  4. Для защиты металлов от коррозии (хрома, никеля, меди, серебра, золота) — гальваностегия.
  5. Для получения металлических копий, пластинок — гальванопластика.

Электролиз расплавов и растворов (солей, щелочей, кислот)

Содержание:

Сильнейшим окислительно – восстановительным действием обладает электрический ток. С помощью воздействия электрического тока на вещество можно получить чистый металл. Этот метод называется электролизом.

Электролиз – процесс, при котором происходит разложение вещества электрическим током.

Процесс электролиза может протекать только в веществах, проводящих электрический ток, то есть электролитах. К электролитам относят представителей основных классов неорганических соединений – кислоты, соли, щелочи.

Для протекания процесса требуется устройство, называемое электролизером.

Данное устройство работает от внешнего источника питания, который подает электрический ток. Представляет собой емкость, в которую опущены два электрода (катод и анод), заполнена емкость электролитом. При подаче электрического тока происходит разложение вещества. Для того чтобы узнать протекает электролиз или нет, в цепь включают лампочку, если лампочка загорается, значит в системе есть ток, если при замыкании цепи, лампочка не горит, то электролиз не протекает – вещество является не электролитом.

Катод (-) – является отрицательно заряженным электродом, катионы ( + ) перемещаются к нему и происходит процесс восстановления.

Анод (+) – положительно заряженный электрод, к нему перемещаются анионы (-) и происходит процесс окисления.

Можно выделить два типа электролиза для расплавов и растворов. Ход этих двух процессов происходит по-разному. Зависит по большей части это от содержания воды в растворе, которая тоже принимает участие в процессе. В расплаве происходит разложение только вещества.

Особенности электролиза расплавов

В расплаве электролит непосредственно подвергается воздействию электрического тока. Металл всегда образуется на катоде, а продукт анода зависит от природы вещества.

При разложении расплава оснований на катоде образуется металл, а на аноде окисляется кислород. (расплав соли – это чистое вещество без примесей в основном твердые вещества)

Разложение расплавов солей происходит по-разному у бескислородных и кислородосодержащих. У бескислородной соли на аноде окисляется анион – кислотный остаток, а у кислородосодержащей – окисляется кислород.

Рассмотрим пример электролиза расплава бескислородной соли – хлорида калия. Под действием постоянного электрического тока соль разлагается на катионы калия и анионы хлора.

Катионы K + перемещаются к катоду и принимают электроны, происходит восстановление металлического калия.

  • Катодный процесс: K + + e – → K 0

Анионы Cl движутся к аноду, отдавая электроны, происходит образование газообразного хлора.

  • Анодный процесс: 2Cl – — 2e – → Cl2 0 ↑

Суммарное уравнение процесса электролиза расплава хлористого калия можно представить следующим образом:

Особенности электролиза растворов

В растворах электролитов, помимо самого вещества, присутствует вода. Под действием электрического тока водный раствор электролита разлагается.

Процессы, происходящие на катоде и аноде, различаются.

1. Процесс на катоде не зависит от материала, из которого он изготовлен. Однако, зависит от положения металлов в электрохимическом ряду напряжений.

2. Процесс на аноде зависит от материала, из которого состоит анод и от его природы.

а) Растворимый анод (Cu, Ag, Ni, Cd) подвергается Me => Me n+ + ne

б) На не растворимом аноде (графит, платина) обычно окисляются анионы S – , J – , Br – , Cl – , OH – и молекулы H2O:

  • 2J – => J2 0 + 2e;
  • 4OH – => O2 + 2H2O + 4e;
  • 2H2O => O2 + 4H + + 4e

Рассмотрим примеры различных вариантов электролиза растворов:

1. Разложение бескислородной соли на нерастворимом электроде

Чтобы ознакомиться с этим вариантом электролиза, возьмем йодистый калий. Под действием тока ионы калия устремляются к катоду, а ионы йода к аноду.

Калий находится в диапазоне активности слева от алюминия, поэтому на катоде восстанавливаются молекулы воды и образуется атомарный водород.

Процесс протекает на нерастворимом аноде и в состав соли входит бескислородный остаток, поэтому на аноде образуется йод.

В результате можно создать общее уравнение электролиза:

2. Разложение бескислородной соли на растворимом электроде (медь)

Рассмотрим на примере хлорида натрия. Данная соль разлагается на ионы натрия и хлора, но следует учитывать материал анода. Медный анод сам подвергается окислению. На аноде выделяется чистая медь, и ионы меди переходят с анода на катод, где также осаждается медь. В итоге процесс можно представить следующими уравнениями реакций.

  • NaCl → Na + + Cl –
  • Катод: Cu 2+ + 2e – → Cu 0
  • Анод: Cu 02e – → Cu 2+

В растворе концентрация хлорида натрия остается неизменной, поэтому составить общее уравнение реакции процесса не представляется возможным.

3. Разложение кислородосодержащей соли на нерастворимом (инертном) электроде

Возьмем для примера раствор нитрата калия. В процессе электролиза происходит распад на ионы калия и кислотного остатка.

В ряду активности металлов калий находится левее алюминия, поэтому на катоде восстанавливаются молекулы воды и образуется газообразный водород.

Молекулы воды окисляются на аноде и выделяется кислород.

В результате получаем общее уравнение электролиза:

4. Электролиз раствора щелочи на инертном электроде

В случае разложения щелочи в процесс электролиза включаются молекулы воды и гидроксид-ионы.

Барий находится левее алюминия, поэтому на катоде происходит восстановление воды и выделение водорода.

На аноде откладываются молекулы кислорода.

Получаем суммарное уравнение электролиза:

5. Электролиз раствора кислоты на инертном электроде

При разложении азотной кислоты под действием электрического тока в процесс вступают катионы водорода и молекула воды.

На катоде выделяется водород, на аноде – кислород. Получаем суммарное уравнение процесса:

Применение электролиза

Процессы электролиза нашли свое применение в промышленности в первую очередь для получения чистых металлов электрохимическим путем. Побочными продуктами этого процесса являются кислород и водород, поэтому он является промышленным способом получения этих газов. Очень часто применяют для очистки металлов от примесей и защиты от коррозии.

Что такое электролиз и где он применяется?

Вопрос о том, что такое электролиз, рассматривается еще в школьном курсе физике, и для большинства людей не является секретом. Другое дело – его важность и практическое применение. Этот процесс с большой пользой используется в различных отраслях и может пригодиться для домашнего мастера.

Что такое электролиз?

Электролиз представляет собой комплекс специфических процессов в системе электродов и электролита при протекании по ней постоянного электрического тока. Его механизм основывается на возникновении ионного тока. Электролит – это проводник 2-го типа (ионная проводимость), в котором происходит электролитическая диссоциация. Она связана с разложением на ионы с положительным (катион) и отрицательным (анион) зарядом.

Электролизная система обязательно содержит положительный (анод) и отрицательный (катод) электрод. При подаче постоянного электрического тока катионы начинают двигаться к катоду, а анионы – к аноду. Катионами в основном являются ионы металлов и водород, а анионами – кислород, хлор. На катоде катионы присоединяют к себе избыточные электроны, что обеспечивает протекание восстановительной реакции Men+ + ne → Me (где n – валентность металла). На аноде, наоборот, электрон отдается из аниона с протеканием окислительной реакции.

Таким образом, в системе обеспечивается окислительно-восстановительный процесс. Важно учитывать, что для его протекания необходима соответствующая энергия. Ее должен обеспечить внешний источник тока.

Законы электролиза Фарадея

Великий физик М.Фарадей своими исследованиями позволил не только понять природу электролиза, но и производить необходимые расчеты для его осуществления. В 1832 г. появились его законы, связавшие основные параметры происходящих процессов.

Первый закон

Первый закон Фарадея гласит, что масса восстанавливающегося на аноде вещества прямо пропорциональна электрическому заряду, наведенному в электролите: m = kq = k*I*t, где q — заряд, k – коэффициент или электрохимический эквивалент вещества, I – сила тока, протекающего через электролит, t – время прохождения тока.

Второй закон

Второй закон Фарадея позволил определить коэффициент пропорциональности k. Он звучит следующим образом: электрохимический эквивалент любого вещества прямо пропорционален его молярной массе и обратно пропорционален валентности. Закон выражается в виде:

k = 1/F*A/z, где F – постоянная Фарадея, А- молярная масса вещества, z – его химическая валентность.

С учетом обоих законов можно вывести окончательную формулу для расчета массы, оседающего на электроде вещества: m = A*I*t/(n*F), где n – количество электронов, участвующих в электролизе. Обычно n соответствует заряду иона. С практической точки зрения важна связь массы вещества с подаваемым током, что позволяет контролировать процесс, изменяя его силу.

Электролиз расплавов

Один из вариантов электролиза – использование в качестве электролита расплав. В этом случае в электролизном процессе участвуют только ионы расплава. В качестве классического примера можно привести электролиз солевого расплава NaCl (поваренная соль). К аноду устремляются отрицательные ионы, а значит, выделяется газ (Cl). На катоде будет происходить восстановление металла, т.е. оседание чистого Na, образующегося из положительных ионов, притянувших избыточные электроны. Аналогично можно получать другие металлы (К, Са, Li и т.д.) из расправа соответствующих солей.

При электролизе в расплаве электроды не подвергаются растворению, а участвуют только в качестве источника тока. При их изготовлении можно использовать металл, графит, некоторые полупроводники. Важно, чтобы материал имел достаточную проводимость. Один из наиболее распространенных материалов – медь.

Особенности электролиза в растворах

Электролиз в водном растворе существенно отличается от расплава. Здесь имеют место 3 конкурирующих процесса: окисление воды с выделением кислорода, окисление аниона и анодное растворение металла. В процессе задействованы ионы воды, электролита и анода. Соответственно, на катоде может происходить восстановление водорода, катионов электролита и металла анода.

Возможность протекания указанных конкурирующих процессов зависит от величины электрических потенциалов системы. Протекать будет только тот процесс, который требует меньше внешней энергии. Следовательно, на катоде будут восстанавливаться катионы, имеющие максимальный электродный потенциал, а на аноде – окисляться анионы с наименьшим потенциалом. Электродный потенциал водорода принят за «0». Для примера, у калия он равен (-2,93 В), натрия – (-2,71 В), свинца (-0,13 В), а у серебра – (+0,8 В).

Электролиз в газах

Газ может исполнить роль электролита только при наличии ионизатора. В этом случае ток, проходя через ионизированную среду, вызывает необходимый процесс на электродах. При этом законы Фарадея не распространяются на газовый электролиз. Для его осуществления необходимы такие условия:

  1. Без искусственной ионизации газа не поможет ни высокое напряжение, ни большой ток.
  2. Для электролиза подходят лишь кислоты, не содержащие кислорода и находящиеся в газообразном состоянии, и некоторые газы.

Важно! При выполнении необходимых условий процесс протекает аналогично электролизу в жидком электролите.

Особенности процессов, происходящих на катоде и аноде

Для практического применения электролиза важно понимать, что происходит на обоих электродах при подаче электрического тока. Характерны такие процессы:

  1. Катод. К нему устремляются положительно заряженные ионы. Здесь происходит восстановление металлов или выделение водорода. Можно выделить несколько категорий металлов по катионной активности. Такие металлы, как Li, K, Ba, St, Ca, Na, Mg, Be, Al, хорошо восстанавливаются только из расплава солей. Если используется раствор, то выделяется водород за счет электролиза воды. Можно обеспечить восстановление в растворе, но при достаточной концентрации катионов, у следующих металлов — Mn, Cr, Zn, Fe, Cd, Ni, Ti, Co, Mo, Sn, Pb. Процесс протекает наиболее легко для Ag, Cu, Bi, Pt, Au, Hg.
  2. Анод. К этому электроду поступают отрицательно заряженные ионы. Окисляясь, они отбирают электроны у металла, что приводит к их анодному растворению, т.е. переходу в положительно заряженные ионы, которые направляются к катоду. Анионы также подразделяются по своей активности. Только из расплавов могут разряжаться такие анионы PO4, CO3, SO4, NO3, NO2, ClO4, F. В водных растворах электролизу подвергаются не они, а вода с выделением кислорода. Наиболее легко реагируют такие анионы, как ОН, Cl, I, S, Br.

При обеспечении электролиза важно учитывать склонность материала электродов к окислению. В этом отношении выделяются инертные и активные аноды. Инертные электроды делаются из графита, угля или платины и не участвуют в снабжении ионами.

Факторы, влияющие на процесс электролиза

Процесс электролиза зависит от следующих факторов:

  1. Состав электролита . Значительное влияние оказывают различные примеси. Они подразделяются на 3 типа – катионы, анионы и органика. Вещества могут быть более или менее отрицательными, чем основной металл, что и мешает процессу. Среди органических примесей выделяются загрязнители (например масла) и ПАВ. Их концентрация имеет предельно допустимые значения.
  2. Плотность тока . В соответствии с законами Фарадея, масса осаждаемого вещества увеличивается с увеличением силы тока. Однако возникают неблагоприятные обстоятельства – концентрированная поляризация, повышенное напряжение, интенсивный разогрев электролита. С учетом этого существуют оптимальные значения плотности тока для каждого конкретного случая.
  3. рН электролита . Кислотность среды также выбирается с учетом металлов. Например оптимальное значение кислотности электролита для цинка – 140 г/куб.дм.
  4. Температура электролита . Она влияет неоднозначно. С увеличением температуры растет скорость электролиза, но повышается и активность примесей. Для каждого процесса есть оптимальная температура. Обычно она находится в пределах 38-45 градусов.

Важно! Электролиз можно ускорить или замедлить путем различных воздействий и выбора состава электролита. Для каждого варианта применения существует свой режим, который следует строго соблюдать.

Где применяется электролиз?

Электролиз применяется во многих сферах. Можно выделить несколько основных направлений использования для получения практических результатов.

Гальваническое покрытие

Тонкое, прочное гальваническое покрытие из металла можно наложить путем электролиза. Покрываемое изделие устанавливается в ванну в виде катода, а электролит содержит соль нужного металла. Так можно покрыть сталь цинком, хромом или оловом.

Электроочистка — рафинирование меди

Примером электроочистки может служить такой вариант: катод – чистая медь, анод – медь с примесями, электролит – водный раствор медного сульфата. Медь из анода переходит в ионы и оседает в катоде уже без примесей.

Добыча металлов

Для получения металлов из солей они переводятся в расплав, а затем обеспечивается электролиз в нем. Достаточно эффективен такой способ для получения алюминия из бокситов, натрия и калия.

Анодирование

При этом процессе покрытие выполняется из неметаллических соединений. Классический пример – анодирование алюминия. Алюминиевая деталь устанавливается, как анод. Электролит – раствор серной кислоты. В результате электролиза на аноде оседает слой из оксида алюминия, обладающего защитными и декоративными свойствами. Указанные технологии широко используются в различных отраслях промышленности. Можно осуществить процессы и своими руками с соблюдением техники безопасности.

Энергетические затраты

Электролиз требует больших энергетических затрат. Процесс будет иметь практическую ценность при достаточной величине анодного тока, а для этого необходимо приложить значительный постоянный ток от источника электроэнергии. Кроме того, при его проведении возникают побочные потери напряжения – анодное и катодное перенапряжение, потери в электролите за счет его сопротивления. Эффективность работы установки определяется путем отнесения мощности энергозатрат к единице полезной массы полученного вещества.

1.4.9. Электролиз расплавов и растворов (солей, щелочей, кислот).

Что такое электролиз? Для более простого понимания ответа на этот вопрос давайте представим себе любой источник постоянного тока. У каждого источника постоянного тока всегда можно найти положительный и отрицательный полюс:

Подсоединим к нему две химически стойких электропроводящих пластины, которые назовем электродами. Пластину, присоединенную к положительному полюсу назовем анодом, а к отрицательному катодом:

Далее, представьте, что у вас есть возможность опустить эти два электрода в расплав хлорида натрия:

Хлорид натрия является электролитом, при его расплавлении происходит диссоциация на катионы натрия и хлорид-ионы:

Очевидно, что заряженные отрицательно анионы хлора направятся к положительно заряженному электроду – аноду, а положительно заряженные катионы Na + направятся к отрицательно заряженному электроду – катоду. В результате этого и катионы Na + и анионы Cl − разрядятся, то есть станут нейтральными атомами. Разрядка происходит посредством приобретения электронов в случае ионов Na + и потери электронов в случае ионов Cl − . То есть на катоде протекает процесс:

Поскольку каждый атом хлора имеет по неспаренному электрону, одиночное существование их невыгодно и атомы хлора объединяются в молекулу из двух атомов хлора:

Таким образом, суммарно, процесс, протекающий на аноде, правильнее записать так:

То есть мы имеем:

Катод: Na + + 1e − = Na 0

Анод: 2Cl − − 2e − = Cl2

Подведем электронный баланс:

Na + + 1e − = Na 0 |∙2

2Cl − − 2e − = Cl2 |∙1 + + 2e − + 2Cl − − 2e − = 2Na 0 + Cl2

Сократим два электрона аналогично тому, как это делается в алгебре получим ионное уравнение электролиза:

2Na + + 2Cl − = 2Na 0 + Cl2

далее, объединив ионы Na + и Cl − получим, уравнение электролиза расплава хлорида натрия:

Рассмотренный выше случай является с теоретической точки зрения наиболее простым, поскольку в расплаве хлорида натрия из положительно заряженных ионов были только ионы натрия, а из отрицательных – только анионы хлора.

Другими словами, ни у катионов Na + , ни у анионов Cl − не было «конкурентов» за катод и анод.

А, что будет, например, если вместо расплава хлорида натрия ток пропустить через его водный раствор? Диссоциация хлорида натрия наблюдается и в этом случае, но становится невозможным образование металлического натрия в водном растворе. Ведь мы знаем, что натрий – представитель щелочных металлов – крайне активный металл, реагирующий с водой очень бурно. Если натрий не способен восстановиться в таких условиях, что же тогда будет восстанавливаться на катоде?

Давайте вспомним строение молекулы воды. Она представляет собой диполь, то есть у нее есть отрицательный и положительный полюсы:

Именно благодаря этому свойству, она способна «облеплять» как поверхность катода, так и поверхность анода:

При этом могут происходить процессы:

Таким образом, получается, что если мы рассмотрим раствор любого электролита, то мы увидим, что катионы и анионы, образующиеся при диссоциации электролита, конкурируют с молекулами воды за восстановление на катоде и окисление на аноде.

Так какие же процессы будут происходить на катоде и на аноде? Разрядка ионов, образовавшихся при диссоциации электролита или окисление/восстановление молекул воды? Или, возможно, будут происходить все указанные процессы одновременно?

В зависимости от типа электролита при электролизе его водного раствора возможны самые разные ситуации. Например, катионы щелочных, щелочноземельных металлов, алюминия и магния просто не способны восстановиться в водной среде, так как при их восстановлении должны были бы получаться соответственно щелочные, щелочноземельные металлы, алюминий или магний т.е. металлы, реагирующие с водой.

В таком случае является возможным только восстановление молекул воды на катоде.

Запомнить то, какой процесс будет протекать на катоде при электролизе раствора какого-либо электролита можно, следуя следующим принципам:

1) Если электролит состоит из катиона металла, который в свободном состоянии в обычных условиях реагирует с водой, на катоде идет процесс:

Это касается металлов, находящихся в начале ряда активности по Al включительно.

2) Если электролит состоит из катиона металла, который в свободном виде не реагирует с водой, но реагирует с кислотами неокислителями, идут сразу два процесса, как восстановления катионов металла, так и молекул воды:

К таким металлам относятся металлы, находящиеся между Al и Н в ряду активности.

3) Если электролит состоит из катионов водорода (кислота) или катионов металлов, не реагирующих с кислотами неокислителями — восстанавливаются только катионы электролита:

2Н + + 2е − = Н2 – в случае кислоты

Me n + + ne = Me 0 – в случае соли

На аноде тем временем ситуация следующая:

1) Если электролит содержит анионы бескислородных кислотных остатков (кроме F − ), то на аноде идет процесс их окисления, молекулы воды не окисляются. Например:

Фторид-ионы не окисляются на аноде поскольку фтор не способен образоваться в водном растворе (реагирует с водой)

2) Если в состав электролита входят гидроксид-ионы (щелочи) они окисляются вместо молекул воды:

3) В случае того, если электролит содержит кислородсодержащий кислотный остаток (кроме остатков органических кислот) или фторид-ион (F − ) на аноде идет процесс окисления молекул воды:

4) В случае кислотного остатка карбоновой кислоты на аноде идет процесс:

2RCOO − − 2e − = R-R + 2CO2

Давайте потренируемся записывать уравнения электролиза для различных ситуаций:

Пример №1

Напишите уравнения процессов протекающих на катоде и аноде при электролизе расплава хлорида цинка, а также общее уравнение электролиза.

При расплавлении хлорида цинка происходит его диссоциация:

Далее следует обратить внимание на то, что электролизу подвергается именно расплав хлорида цинка, а не водный раствор. Другими словами, без вариантов, на катоде может происходить только восстановление катионов цинка, а на аноде окисление хлорид-ионов т.к. отсутствуют молекулы воды:

Катод: Zn 2+ + 2e − = Zn 0 |∙1

Анод: 2Cl − − 2e − = Cl2 |∙1

Пример №2

Напишите уравнения процессов протекающих на катоде и аноде при электролизе водного раствора хлорида цинка, а также общее уравнение электролиза.

Так как в данном случае, электролизу подвергается водный раствор, то в электролизе, теоретически, могут принимать участие молекулы воды. Так как цинк расположен в ряду активности между Al и Н то это значит, что на катоде будет происходить как восстановление катионов цинка, так и молекул воды.

Zn 2+ + 2e − = Zn 0

Хлорид-ион является кислотным остатком бескислородной кислоты HCl, поэтому в конкуренции за окисление на аноде хлорид-ионы «выигрывают» у молекул воды:

В данном конкретном случае нельзя записать суммарное уравнение электролиза, поскольку неизвестно соотношение между выделяющимися на катоде водородом и цинком.

Пример №3

Напишите уравнения процессов протекающих на катоде и аноде при электролизе водного раствора нитрата меди, а также общее уравнение электролиза.

Нитрат меди в растворе находится в продиссоциированном состоянии:

Медь находится в ряду активности правее водорода, то есть на катоде восстанавливаться будут катионы меди:

Cu 2+ + 2e − = Cu 0

Нитрат-ион NO3 − — кислородсодержащий кислотный остаток, это значит, что в окислении на аноде нитрат ионы «проигрывают» в конкуренции молекулам воды:

Катод: Cu 2+ + 2e − = Cu 0 |∙2

2Cu 2+ + 2H2O = 2Cu 0 + O2 + 4H +

Полученное в результате сложения уравнение является ионным уравнением электролиза. Чтобы получить полное молекулярное уравнение электролиза нужно добавить по 4 нитрат иона в левую и правую часть полученного ионного уравнения в качестве противоионов. Тогда мы получим:

Пример №4

Напишите уравнения процессов, протекающих на катоде и аноде при электролизе водного раствора ацетата калия, а также общее уравнение электролиза.

Решение:

Ацетат калия в водном растворе диссоциирует на катионы калия и ацетат-ионы:

Калий является щелочным металлом, т.е. находится в ряду электрохимическом ряду напряжений в самом начале. Это значит, что его катионы не способны разряжаться на катоде. Вместо них восстанавливаться будут молекулы воды:

Как уже было сказано выше, кислотные остатки карбоновых кислот «выигрывают» в конкуренции за окисление у молекул воды на аноде:

Таким образом, подведя электронный баланс и сложив два уравнения полуреакций на катоде и аноде получаем:

Катод: 2H2O + 2e − = 2OH − + H2 |∙1

Мы получили полное уравнение электролиза в ионном виде. Добавив по два иона калия в левую и правую часть уравнения и сложив с противоионами мы получаем полное уравнение электролиза в молекулярном виде:

Пример №5

Напишите уравнения процессов, протекающих на катоде и аноде при электролизе водного раствора серной кислоты, а также общее уравнение электролиза.

Серная кислота диссоциирует на катионы водорода и сульфат-ионы:

На катоде будет происходить восстановление катионов водорода H + , а на аноде окисление молекул воды, поскольку сульфат-ионы являются кислородсодержащими кислотными остатками:

Катод: 2Н + + 2e − = H2 |∙2

Сократив ионы водорода в левой и правой и левой части уравнения получим уравнение электролиза водного раствора серной кислоты:

Как можно видеть, электролиз водного раствора серной кислоты сводится к электролизу воды.

Пример №6

Напишите уравнения процессов, протекающих на катоде и аноде при электролизе водного раствора гидроксида натрия, а также общее уравнение электролиза.

Диссоциация гидроксида натрия:

На катоде будут восстанавливаться только молекулы воды, так как натрий – высокоактивный металл, на аноде только гидроксид-ионы:

Катод: 2H2O + 2e − = 2OH − + H2 |∙2

Сократим две молекулы воды слева и справа и 4 гидроксид-иона и приходим к тому, что, как и в случае серной кислоты электролиз водного раствора гидроксида натрия сводится к электролизу воды:

Электролиз солей

Самопроизвольные окислительно-восстановительные реакции дают возможность создания гальванических элементов, в которых вырабатывается электрическая энергия. Если же реакция несамопроизвольна, то ее осуществление возможно при помощи электрической энергии. Подобные процессы осуществляют в электролизерах и называются они реакциями электролиза (электролиз солей).

Электролизер

Как видно на рисунке ниже, электролизер состоит из двух электродов, погруженных в расплав или водный раствор соли. Источник электрического тока передает электроны в один из электродов и удаляет их с другого электрода. При отдаче электронов электрод заряжается положительно, а при получении электронов – отрицательно.

Электролиз расплава NaCl

При электролизе расплава NaCl на отрицательном электроде (катоде) происходит присоединение электронов ионом натрия Na + и его восстановление. При этом вблизи электрода концентрация ионов Na + уменьшается и, вследствие этого, к электроду перемещается дополнительное количество ионов Na + .

Аналогично происходит миграция ионов Cl — к положительному электроду, где в результате отдачи электронов протекает процесс окисления. Таким образом, на электродах идет накопление продуктов окисления и восстановления.

Как и в гальваническом элементе, процесс восстановления протекает на катоде, а процесс окисления – на аноде.

При электролизе расплава NaCl протекают следующие реакции:

Анод 2Cl — -2e — → Cl2 0
Катод 2Na + + 2e — → 2Na 0
2Na + + 2Cl — → 2Na 0 + Cl2 0

В промышленности таким образом получают натрий, используя электролизер Даунса, представленный на рисунке ниже.

Сложнее протекает электролиз водных растворов электролитов.

Электролиз водного раствора NaCl

Так, например, при электролизе водного раствора хлорида натрия, происходят иные процессы, нежели при электролизе его расплава. На катоде происходит восстановление воды, а не натрия; на аноде происходит окисление хлорид-ионов:

Анод 2Cl — -2e — → Cl2 0
Катод 2H 2 O + 2e — → H2 0 +2OH —
2H2O + 2Cl — → H2 0 + Cl2 0

Таким образом, получить натрий путем электролиза водного раствора его соли не удастся: на катоде выделяется водород, а на аноде хлор.

При электролизе водных растворов солей окислительно-восстановительные процессы, протекающие на катоде и аноде зависят от природы катионов металлов и характера аниона соли.

Процесс на катоде

Предсказать результат восстановительного процесса на катоде можно с помощью таблицы стандартных электродных потенциалов металлов:

  • Катионы металлов, имеющие большую величину стандартного потенциала и расположенные в ряду после водорода полностью восстанавливаются на катоде и выделяются в виде металлов: Cu 2+ , Hg2 2+ , Ag + , Hg 2+ , Pt 2+ до Pt 4+
  • Катионы металлов, имеющие малую величину стандартного потенциала не восстанавливаются на катоде, вместо этого происходит восстановление воды: от Li + , Na + … до Al 3+ включительно.
  • Катионы металлов, имеющие среднюю величину стандартного потенциала будут восстанавливаться на катоде вместе с молекулами воды: от Mn 2+ , Zn 2+ … до H

Если имеется смесь катионов, то легче всего на катоде будут восстанавливаться катионы металла с наиболее положительным потенциалом, например, из смеси Cu 2+ , Ag + , Zn 2+ сначала восстановится Ag + (E = +0,79 В), затем Cu 2+ (E = +0,337 В) и только потом Zn 2+ (E = +0,76 В).

Процесс на аноде

Какие процессы будут протекать на аноде зависит от материала анода и самого электролита. Нерастворимые аноды в процессе электролиза не окисляются, тогда как растворимые аноды разрушаются и в виде ионов переходят в раствор.

Рассмотрим процессы, происходящие на инертном (нерастворимом) аноде:

  • При электролизебескислородных кислот и их солей (исключение HF и фториды) на аноде окисляются их анионы.

2Cl — -2e — = Cl2

  • При электролизекислородсодержащих кислот и их солей c максимальной степенью окисления на аноде происходит окисление воды, в связи с тем, что потенциал окисления воды меньше, чем для таких анионов.

2H2O -4e — = O2 + 4H +

  • При электролизе кислородсодержащих кислот и их солей c промежуточной степенью окисления на аноде происходит окисление анионов кислот

SO3 2- + H2O -2e — = SO4 2- + 2H +

В таблице ниже представлены наиболее типичные случаи электролиза с химической точки зрения

K: Cu 2+ + 2e — = Cu

Т.е. происходит разложение воды

Понравилась статья? Поделиться с друзьями:
Добавить комментарий