Что такое диэлектрик для физика

Диэлектрики: определения, формулы, примеры

Диэлектриками называют вещества, не обладающие способностью проводить электрический ток.

Стоит отметить, что данное определение лишь приблизительно выражает физический смысл приведенного понятия.

Абсолютных изоляторов, то есть веществ, которые совсем не проводят ток, в природе не существует. Диэлектрики по сравнению с проводниками в 1015 − 1020 раз хуже проводят ток. Данный факт основывается на том, что в диэлектриках отсутствуют свободные заряды.

Что такое диэлектрики и их примеры

Если диэлектрик поместить в электрическое поле, то, как диэлектрик, так и само поле значительно изменятся. В диэлектриках, в которых до контакта с полем не было заряда, возникают электрические заряды. Это явление объясняется процессом поляризации вещества, другими словами, в поле диэлектрик обретает электрические полюсы. Возникающие при этом заряды называются поляризационными.

Разделить такие заряды невозможно, чем они существенно отличаются от индукционных зарядов в проводниках. Данное отличие основывается на том факте, что в металлах присутствуют электроны, имеющие возможность перемещаться на относительно большие расстояния. В диэлектриках положительные и отрицательные заряды связаны между собой, и их перемещение ограничено пределами одной молекулы, что является крайне малым расстоянием.

Диэлектрики состоят либо из нейтральных молекул, либо из закрепленных в положении равновесия, к примеру, в узлах кристаллической решетки заряженных ионов. Ионные кристаллические решетки могут быть разбиты на, в целом, нейтральные «элементарные ячейки».

Действие электрического поля на заряды, принадлежащие диэлектрику, провоцирует лишь легкое смещение относительно изначального положения, тогда как заряды проводников, испытывающие такое же влияние, срываются с места. В условиях отсутствующего электрического поля диэлектрик может быть условно представлен в виде совокупности молекул, в каждой из которых положительные и отрицательные заряды равные по величине распределены по всему объему вещества.

В процессе поляризации заряды каждой отдельной молекулы диэлектрика смещаются в противоположные ее стороны. Соответственно, одна часть молекулы становиться положительно заряженной, а другой – отрицательно, что, в общем, дает возможность заявить: молекула превращается в электрический диполь.

Равнодействующая электрических сил, в однородном поле оказывающих влияние на нейтральную молекулу диэлектрика, эквивалентна нулю. Этот факт основывается на том, что центр тяжести молекулы не передвигается ни в одну из сторон. Молекула просто претерпевает деформирование.

Существуют такие диэлектрики, в которых в условиях отсутствующего электрического поля молекулы имеют дипольный момент (полярные молекулы).

В случае, когда поле отсутствует, такие молекулы, принимающие непосредственное участие в тепловом движении, ориентированы беспорядочно. Если же диэлектрик находится в поле, молекулы, в основном, ориентируются по его направлению. Соответственно, диэлектрик проходит процесс поляризации.

У симметричных молекул, таких как, к примеру, O 2 , N 2 , в отсутствие поля центры тяжести отрицательных и положительных зарядов одинаковы. По этой причине собственного дипольного момента у молекул нет (неполярные молекулы). У несимметричных же молекул (возьмем в качестве примера H 2 O , C O ) центры тяжести сдвинуты друг относительно друга, в результате чего молекулы имеют дипольный момент и носят название полярных.

Также существуют диэлектрические или же ионные кристаллы, которые формируются при помощи ионов с противоположным знаком. Такой кристалл состоит из пары “вдвинутых” друг в друга кристаллических решеток, одна из которых является положительной, а вторая – отрицательной. В целом кристалл условно можно принять за подобие гигантской молекулы. Процесс наложения электрического поля провоцирует сдвиг одной решеток относительно друг друга, вследствие чего и происходит поляризация ионных кристаллов. Существует также тип поляризованных без участия поля кристаллов. При дальнейшем исследовании поведения диэлектриков в электрических полях механизм возникновения поляризации значения иметь не будет. Существенным фактом является только то, что поляризация диэлектрика происходит через появление некомпенсированных макроскопических зарядов. Значения объемной плотность зарядов ( ρ ) и поверхностной плотности ( σ ) неполяризованного диэлектрика равняются нулю. После же процесса поляризации σ ≠ 0 , а в некоторых случаях и ρ ≠ 0 . Поляризация приводит к появлению в тонком поверхностном слое диэлектрика избытка связанных зарядов с одним знаком. В том случае, если ортогональная или же перпендикулярная часть напряженности поля E n → ≠ 0 на приведенном участке, то в результате влияния поля заряды с одним знаком уходят внутрь, а с другим, наоборот, выходят наружу.

Вектор поляризации диэлектрика

Поляризованность P → или, другими словами, вектор поляризованности характеризует степень поляризации диэлектрика:

где ∆ ρ представляет собой дипольный момент элемента диэлектрика.

В условиях неполярных молекул вектор поляризованности может быть определен в следующем виде:

P → = 1 ∆ V ∑ ∆ V ρ i → = N ρ 0 → ,

где сложение идет относительно всех молекул в объеме △ V . N – концентрация молекул,
ρ 0 → является индуцированным дипольным моментом (Он один и тот же у всех молекул). ρ 0 → ↑ ↑ E → .

Формула поляризованности в условиях полярных молекул принимает вид следующего выражения:

P → = 1 ∆ V ∑ ∆ V ρ i → = N ” open=” p → ,

в котором ” open=” P → представляет собой среднее значение дипольных моментов, которые равнозначны по модулю, но обладают разными направлениями.

В изотропных диэлектриках средние дипольные моменты по направлению идентичны напряженности внешнего электрического поля. У диэлектриков с молекулами полярного типа, вклад в поляризованность от наведенных зарядов значительно ниже вклада от переориентации поля.

Ионная решеточная поляризации может быть описана следующей формулой: P → = 1 ∆ V ∑ ∆ V ρ i → = N ” open=” p → .

В большей части случаев подобная поляризация является анизотропной.

Если представить плоский конденсатор, который заполнен диэлектриком так, как это проиллюстрировано на рисунке 1 , то на принадлежащей ему левой обкладке расположен положительный заряд, а на правой – отрицательный. По причине того факта, что разноименные заряды притягиваются друг к другу, у положительной обкладки на поверхности диэлектрика появится отрицательный заряд, а у правой, то есть отрицательной – положительный заряд диэлектрика. Выходит, что поле, формирующееся поляризационными зарядами, имеет противоположное направлению поля направление, которое создают обкладки, соответственно, диэлектрик ослабляет поле.

+ q , − q представляют собой заряды на обкладках конденсатора.

E → является напряженностью поля, которое формируется обкладками конденсатора.

− q ′ , + q ′ – это заряды диэлектрика.

E → ‘ – напряженность поля, которое создается как результат поляризации диэлектрика.

Явление влияния вещества на магнитное и электрическое поля было эмпирическим путем открыто Фарадеем. Именно этим ученым было в науку были введены такие термины, как диэлектрик и диэлектрическая постоянная.

В случае если однородный изотропный диэлектрик полностью заполняет собой объем, ограниченный эквипотенциальными поверхностями поля сторонних зарядов, то напряженность поля внутри него в ε раз меньше напряженности поля сторонних зарядов.

где ε определяет диэлектрическую проницаемость среды.

Напряженность поля точечного заряда, который расположен в диэлектрике с некоторой диэлектрической проницаемостью ε, может быть выражена в виде следующего выражения:

E → = 1 4 π ε ε 0 q r 3 r → .

Закон Кулона для зарядов, находящихся в жидком и газообразном диэлектрике принимает такой вид:

F → = 1 4 π ε ε 0 q 1 q 2 r 3 r → .

Задание: Бесконечную плоскую пластину из однородного изотропного диэлектрика разместили в однородном электростатическом поле с напряженностью E = 200 В м , направленной под прямым углом силовым линиям поля. Диэлектрическая проницаемость диэлектрика равняется 2 . Какова напряженность поля внутри диэлектрика?

Решение

Поле в вакууме в ε раз сильнее, чем поле в диэлектрике, по этой причине запишем, что:

Произведем некоторые расчеты:

E → ‘ = 200 2 = 100 В м .

Ответ: Напряженность поля в пластине будет 100 В м .

Задание: Заряженные шарики обладают массой m 1 = m 2 = m . Они подвешены на нитях, имеющих одинаковые значения длины, в одной точке, их заряды эквивалентны q 1 и q 2 ( смотри рисунок 1 ). Изначально они располагаются в воздухе (диэлектрическая проницаемость ε 1 ), после этого погружаются в жидкость ε 2 . Каково отношение диэлектрических проницаемостей ε 2 ε 1 , если при погружении в жидкость системы из шариков угол расхождения нитей не претерпел изменений? Отношение плотности шариков к плотности диэлектрика ρ s h ρ d = b .

Решение

Запишем условие равновесия шарика в симметричной системе в воздухе:

F e 1 → + m g → + N 1 → = 0 .

Теперь выразим условие равновесия одного шарика в жидкости:

F e 2 → + m g → + N 2 → + F A → = 0 .

Запишем проекции уравнения F e 1 → + m g → + N 1 → = 0 на оси:

О х : F e 1 – N 1 sin a 2 = 0 ,

O y : m g – N 1 cos α 2 = 0 .

Проекции уравнения F e 2 → + m g → + N 2 → + F A → = 0 на оси:

О х : F e 2 – N 2 sin α 2 = 0 ,

O y : m g – N 2 cos α 2 – F A = 0 .

Берем отношение уравнения F e 1 – N 1 sin a 2 = 0 и m g – N 1 cos a 2 = 0 , в качестве результата получаем:

t g a 2 = F e 1 m g .

Уравнение F e 2 – N 2 sin a 2 = 0 на уравнение m g – N 2 cos a 2 – F A = 0 , получаем:

t g a 2 = F e 2 m g – F A → F e 1 m g = F e 2 m g – F A .

Основываясь на законе Кулона, запишем такое выражения для F e 1 , F e 2 :

F e 1 = q 1 q 2 4 π ε 1 ε 0 r 2 и F e 2 = q 1 q 2 4 π ε 2 ε 0 r 2 .

Модуль силы Архимеда равняется следующему выражению:

F A = ρ d V g = ρ d m ρ s h g .

Подставим в уравнение t g a 2 = F e 2 m g – F A → F e 1 m g = F e 2 m g – F A уравнения F e 1 = q 1 q 2 4 π ε 1 ε 0 r 2 и

F e 2 = q 1 q 2 4 π ε 2 ε 0 r 2 , в результате получим:

q 1 q 2 4 πε 1 ε 0 r 2 m g = q 1 q 2 4 πε 2 ε 0 r 2 m g – ρ d m ρ s h g → 1 ε 1 1 = 1 ε 2 1 – ρ d ρ s h → ε 2 ε 1 = 1 1 – ρ d ρ s h = 1 1 – b .

Ответ: Диэлектрическая проницаемость жидкости должна быть ε 2 e 1 = 1 1 – b .

Диэлектрик

Диэлектрик (изолятор) — вещество, плохо проводящее электрический ток. Концентрация свободных носителей заряда в диэлектрике не превышает 10 8 см −3 . Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле. С точки зрения зонной теории твёрдого тела диэлектрик — вещество с шириной запрещённой зоны больше 3 эВ.

Содержание

Физические свойства

Условно к проводникам относят материалы с удельным электрическим сопротивлением ρ −5 Ом·м, а к диэлектрикам — материалы, у которых ρ > 10 8 Ом·м. При этом надо заметить, что удельное сопротивление хороших проводников может составлять всего 10 −8 Ом·м, а у лучших диэлектриков превосходить 10 16 Ом·м. Удельное сопротивление полупроводников в зависимости от строения и состава материалов, а также от условий их эксплуатации может изменяться в пределах 10 −5 —10 8 Ом·м. Хорошими проводниками электрического тока являются металлы. Из 105 химических элементов лишь двадцать пять являются неметаллами, причём двенадцать элементов могут проявлять полупроводниковые свойства. Но кроме элементарных веществ существуют тысячи химических соединений, сплавов или композиций со свойствами проводников, полупроводников или диэлектриков. Чёткую границу между значениями удельного сопротивления различных классов материалов провести достаточно сложно. Например, многие полупроводники при низких температурах ведут себя подобно диэлектрикам. В то же время диэлектрики при сильном нагревании могут проявлять свойства полупроводников. Качественное различие состоит в том, что для металлов проводящее состояние является основным, а для полупроводников и диэлектриков — возбуждённым.

Развитие радиотехники потребовало создания материалов, в которых специфические высокочастотные свойства сочетаются с необходимыми физико-механическими параметрами. Такие материалы называют высокочастотными. Для понимания электрических, магнитных и механических свойств материалов, а также причин старения нужны знания их химического и фазового состава, атомной структуры и структурных дефектов.

Удельное сопротивление деионизированной воды (см. также: бидистиллят) — 10-20 МОм·см.

Параметры

Физическим параметром, который характеризует диэлектрик, является диэлектрическая проницаемость. Диэлектрическая проницаемость может иметь дисперсию.

Примеры

К диэлектрикам относятся воздух и другие газы, стёкла, различные смолы, пластмассы, многие виды резины.

Ряд диэлектриков проявляют интересные физические свойства. К ним относятся электреты, пьезоэлектрики, пироэлектрики, сегнетоэластики, сегнетоэлектрики, релаксоры и сегнетомагнетики.

Использование

При применении диэлектриков — одного из наиболее обширных классов электротехнических материалов — довольно четко определилась необходимость использования как пассивных, так и активных свойств этих материалов.

Диэлектрики используются не только как изоляционные материалы.

Пассивные свойства диэлектриков

Пассивные свойства диэлектрических материалов используются, когда их применяют в качестве электроизоляционных материалов и диэлектриков конденсаторов обычных типов. Электроизоляционными материалами называют диэлектрики, которые не допускают утечки электрических зарядов, то есть с их помощью отделяют электрические цепи друг от друга или токоведущие части устройств, приборов и аппаратов от проводящих, но не токоведущих частей (от корпуса, от земли). В этих случаях диэлектрическая проницаемость материала не играет особой роли или она должна быть возможно меньшей, чтобы не вносить в схемы паразитных ёмкостей. Если материал используется в качестве диэлектрика конденсатора определённой ёмкости и наименьших размеров, то при прочих равных условиях желательно, чтобы этот материал имел большую диэлектрическую проницаемость.

Активные свойства диэлектриков

Активными (управляемыми) диэлектриками являются сегнетоэлектрики, пьезоэлектрики, пироэлектрики, электролюминофоры, материалы для излучателей и затворов в лазерной технике, электреты и др.

Что такое диэлектрики и где они используются

Диэлектрики – это вещества, которые не проводят электрический ток, до определенной поры. При определенных условиях проводимость в них зарождается. Этими условиями выступают механические, тепловые – в общем, энергетические виды воздействий. Кроме диэлектриков, вещества также классифицируются на проводники и полупроводники.

Чем отличаются диэлектрики от проводников и полупроводников

Теоретическую разницу между этими тремя видами материалов можно представить, и я это сделаю, на рисунке ниже:

Рисунок красивый, знакомый со школьной скамьи, но что-то практическое из него не особо вытянешь. Однако, в этом графическом шедевре четко определена разница между проводником, полупроводником и диэлектриком.

И отличие это в величине энергетического барьера между валентной зоной и зоной проводимости.

В проводниках электроны находятся в валентной зоне, но не все, так как валентная зона – это самая внешняя граница. Точно, это как с мигрантами. Зона проводимости пуста, но рада гостям, так как у неё полно для них свободных рабочих мест в виде свободных энергетических зон. При воздействии внешнего электрического поля, крайние электроны приобретают энергию и перемещаются в свободные уровни зоны проводимости. Это движение мы еще называем электрическим током.

В диэлектриках и проводниках всё аналогично, за исключением того, что имеется “забор” – запрещенная зона. Эта зона расположена между валентной и зоной проводимости. Чем больше эта зона, тем больше энергии требуется для преодоления электронами этого расстояния. У диэлектриков величина зоны больше, чем у полупроводников. Этому есть даже условие: если дЭ>3Эв (электронвольт) – то это диэлектрик, в обратном случае дЭ

Главными электрическими свойствами диэлектриков являются поляризация (смещение зарядов) и электропроводность (способность проводить электрический ток) Смещение связанных зарядов диэлектрика или их ориентация в электрическом поле называется поляризацией. Это свойство диэлектрических материалов характеризуется относительной диэлектрической проницаемостью ε. При поляризации на поверхности диэлектрика образуются связанные электрические заряды.

В зависимости от типа диэлектрика поляризация может быть: электронной, ионной, дипольно-релаксационной, спонтанной. Более подробно про их свойства на инфографике ниже.

Под электропроводностью понимают способность диэлектрика проводить электрический ток. Ток, протекающий в диэлектрике называется током утечки. Ток утечки состоит из двух составляющих – тока абсорбционного и тока сквозного. Сквозные токи обусловлены наличием свободных зарядов в диэлектрике, абсорбционный ток – поляризационными процессами до момента установления равновесия в системе.

Величина электропроводности зависит от температуры, влажности и количества свободных носителей заряда.

При увеличении температуры электропроводность диэлектриков увеличивается, а сопротивление падает.

Зависимость от влажности вновь возвращает нас к классификации диэлектриков. Ведь, неполярные диэлектрики не смачиваются водой и на изменение влажности им нет дела. А у полярных диэлектриков при увеличении влажности повышается содержание ионов, и электропроводность увеличивается.

Проводимость диэлектрика состоит из поверхностной и объемной проводимостей. Известно понятие удельной объемной проводимости, обозначается буквой сигма σ. А обратная величина называется удельное объемной сопротивление и обозначается буквой ро ρ.

Резкое увеличение проводимости в диэлектрике при возрастании напряжения может привести к электрическому пробою. И аналогично, если сопротивление изоляции падает, значит изоляция не справляется со своей задачей и необходимо применять меры. Сопротивление изоляции состоит из поверхностного и объемного сопротивлений.

Под диэлектрическими потерями в диэлектриках понимают потери тока внутри диэлектрика, которые рассеиваются в виде тепла. Для определения этой величины вводят параметр тангенс дельта tgδ. δ – угол, дополняющий до 90 градусов, угол между током и напряжением в цепи с емкостью.

Диэлектрические потери бывают: резонансные, ионизационные, на электропроводность, релаксационные. Теперь подробнее поговорим про каждый тип.

Электрическая прочность это отношение пробивного напряжения к расстоянию между электродами (или толщина диэлектрика). Эта величина определяется минимальной величиной напряженности электрического поля, при которой произойдет пробой.

Пробой может быть электрическим (ударная ионизация, фотоионизация), тепловым (большие диэлектрические потери, следовательно много тепла, и обугливание с оплавлением может произойти) и электрохимическим (в результате образования подвижных ионов).

И в конце таблица диэлектриков, как же без нее.

В таблице выше приведены данные по электрической прочности, удельному объемному сопротивлению и относительной диэлектрической проницаемостью для различных веществ. Также тангенс угла диэлектрических потерь не обошли стороной.

Диэлектрик

Поляризованный диэлектрический материал

Диэлектрик (изолятор) — вещество, плохо проводящее или совсем не проводящее электрический ток. Плотность свободных носителей заряда в диэлектрике не превышает 10 8 шт/см³. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле.

Диэлектрический материал как электрический изолятор может быть поляризован с помощью приложенного электрического поля. Если диэлектрик поместить в электрическое поле, электрические заряды не проходят через материал, но стоит только немного сместить заряды от их средних положений равновесия вызывается диэлектрическая поляризация. Из-за диэлектрической поляризации, положительные заряды смещаются в направлении поля, а отрицательные заряды имеют сдвиг в противоположном направлении. Это создает внутреннее электрическое поле, которое снижает обще поле внутри диэлектрика. [1] Если диэлектрик состоит из слабо связанных молекул, эти молекулы не только становятся поляризованными, а также переориентируются так, что их оси симметрии выравнивают поля. [2]

Исследование диэлектрических свойств касается хранения и диссипации электрической и магнитной энергии в материалы. [3] Диэлектрики имеют важное значение для объяснения различных явлений в электронике, оптике и физике твердого тела.

Физическим параметром, который характеризует диэлектрик, является диэлектрическая проницаемость. Диэлектрическая проницаемость может иметь дисперсию.

К диэлектрикам относятся воздух и другие газы, стекло, различные смолы, пластмассы непременно сухие. Химически чистая вода также является диэлектриком.

Диэлектрики используются не только как изоляционные материалы.

Ряд диэлектриков проявляют интересные физические свойства.

К ним относятся электреты, пьезоэлектрики, пироэлектрики, сегнетоэластики, сегнетоэлектрики, релаксоры и сегнетомагнетики. При применении диэлектриков — одного из наиболее обширных классов электротехнических материалов — довольно четко определилась необходимость использования как пассивных, так и активных свойств этих материалов. Пассивные свойства диэлектрических материалов используются, когда их применяют в качестве электроизоляционных материалов и диэлектриков конденсаторов обычных типов. Электроизоляционными материалами называют диэлектрики, которые не допускают утечки электрических зарядов, то есть с их помощью отделяют электрические цепи друг от друга или токоведущие части устройств, приборов и аппаратов от проводящих, но не токоведущих частей (от корпуса, от земли). В этих случаях диэлектрическая проницаемость материала не играет особой роли или она должна быть возможно меньшей, чтобы не вносить в схемы паразитных емкостей. Если материал используется в качестве диэлектрика конденсатора определенной емкости и наименьших размеров, то при прочих равных условиях желательно, чтобы этот материал имел большую диэлектрическую проницаемость. Активными (управляемыми) диэлектриками являются сегнетоэлектрики, пьезоэлектрики, пироэлектрики, электролюминофоры, материалы для излучателей и затворов в лазерной технике, электреты и др. Условно к проводникам относят материалы с удельным электрическим сопротивлением ρ -5 Ом·м, а к диэлектрикам — материалы, у которых ρ > 10 8 Ом·м. При этом надо заметить, что удельное сопротивление хороших проводников может составлять всего 10 -8 Ом·м, а у лучших диэлектриков превосходить 10 16 Ом·м. Удельное сопротивление полупроводников в зависимости от строения и состава материалов, а также от условий их эксплуатации может изменяться в пределах 10 -5 —10 8 Ом·м. Хорошими проводниками электрического тока являются металлы. Из 105 химических элементов лишь двадцать пять являются неметаллами, причем двенадцать элементов могут проявлять полупроводниковые свойства. Но кроме элементарных веществ существуют тысячи химических соединений, сплавов или композиций со свойствами проводников, полупроводников или диэлектриков. Четкую границу между значениями удельного сопротивления различных классов материалов провести достаточно сложно. Например, многие полупроводники при низких температурах ведут себя подобно диэлектрикам. В то же время диэлектрики при сильном нагревании могут проявлять свойства полупроводников. Качественное различие состоит в том, что для металлов проводящее состояние является основным, а для полупроводников и диэлектриков — возбужденным. Развитие радиотехники потребовало создания материалов, в которых специфические высокочастотные свойства сочетаются с необходимыми физико-механическими параметрами. Такие материалы называют высокочастотными. Для понимания электрических, магнитных и механических свойств материалов, а также причин старения нужны знания их химического и фазового состава, атомной структуры и структурных дефектов. Совокупность научно-технических знаний о физико-химической природе, методах исследования и изготовления различных материалов составляет основу материаловедения, ведущая роль которого в настоящее время широко признана во многих областях техники и промышленности. Успехи материаловедения позволили перейти от использования уже известных к целенаправленному созданию новых материалов с заранее заданными свойствами.

Содержание

  • 1 Диэлектрическая поляризация
    • 1.1 Основы атомной модели
    • 1.2 Дипольная поляризация
    • 1.3 Ионная поляризация
  • 2 См. также
  • 3 Примечания

Диэлектрическая поляризация

Основы атомной модели

Электрическое поле взаимодействия с атомом в классической модели диэлектрической проницаемости.

Классический подход к диэлектрической модели, материала состоит из атомов. Каждый атом состоит из облака отрицательного заряда (электронов), привязанных к и окружающим положительный точечный заряд облаком отрицательного заряда (электронами) в центре. В присутствии электрического поля заряда облако искажается, как показано в правой верхней части фигуры.

Это может быть сведен к простой диполи [1] , используя принцип суперпозиции [2]. Диполь характеризуется дипольным моментом [3], векторная величина, показанная на рисунке синяя стрелка с надписью M. Это связь между электрическим полем и дипольным моментом, что порождает поведение диэлектрика. (Обратите внимание, что дипольный момент пунктов в том же направлении, что и электрическое поле на рисунке. Это не всегда так, и это сильное упрощение, но это справедливо для многих материалов.)

Когда электрическое поле удаляется атом возвращается в исходное состояние. Время, необходимое для этого является так называемая релаксация [4] времени; экспоненциального распада.

В этом и заключается суть модели в физике. Поведение диэлектрическое теперь зависит от ситуации. Чем сложнее ситуация, тем богаче модель должна быть точно описана поведением. Важные вопросы:

  • Создается электрическое поле, постоянное или оно меняется со временем? По какой ставке?
  • Не ответ зависит от направления приложенного поля (изотропность [5] материала)?
  • Ответ везде одинаковый (однородность материала)?
  • Делать каких-либо границ или интерфейсы должны быть учтены?
  • Это отклик линейноcти систем [6] относительно поля, или есть нелинейности [7] систем ?

Связь между электрическим полем E и дипольным моментом M порождает поведение диэлектрической проницаемости, которая для данного материала, может быть охарактеризована функцией F и определяется уравнением:

.

Когда оба типа электрического поля и тип материала были определены, затем выбирается одна простейшая функция F , которая правильно предсказывает явления интересов. Примеры явлений, которые так можно смоделировать включают в себя:

Диэлектрики

Нобелевский лауреат по физике Лев Ландау шутил: «Определим привлекательность женщины как функцию от расстояния. При бесконечном значении аргумента эта функция обращается в нуль. С другой стороны, в точке нуль она также равна нулю (речь идет о внешней привлекательности, а не об осязательной). Согласно теореме Лагранжа, неотрицательная функция, принимающая на концах отрезка нулевые значения, имеет на этом отрезке максимум. Следовательно:

  • 1. Существует расстояние, с которого женщина наиболее привлекательна.
  • 2. Для каждой женщины это расстояние свое.
  • 3. От женщин надо держаться на расстоянии.»

Некое подобие встречается и в поведении материалов под названием диэлектрики. Рассмотрим их более подробно.

Диэлектрики — это вещества, которые в обычных условиях практически не проводят электрический ток. Проводимость диэлектриков в 10 15 -Н0 20 раз хуже, чем у проводников. Такая низкая проводимость диэлектриков вызвана тем, что у них практически отсутствуют свободные носители заряда. Примерами диэлектриков являются все газы (неионизированные), дистиллированная вода, бензол, растительные масла, синтетические масла, стекло, фарфор, слюда и пр.

Диполь. Электрически нейтральную молекулу диэлектрика представляют в виде диполя (рис. 6.7).

Рис. 6.7. Диполь в электрическом поле

Если в молекуле центр тяжести электронов не совпадает с центром тяжести положительного заряда (т.е. © смещен относительно ©), то между ними возникает электрическое поле, а такую систему называют диполем. На рис. 6.7 диполь обычно изображают в виде палочки длиной / с зарядами +q и -q на ее концах.

Электрический момент диполя

Попав во внешнее электрическое поле, диполь ориентируется (см. рис. 6.7).

Поляризация диэлектриков — это ориентация электрических моментов его молекул (диполей) под действием электрического поля.

Вектор поляризации (поляризованность) — есть результирующая ориентация диполей или суммарный электрический момент единицы объема диэлектрика V. Тогда

Заметим, что речь идет о векторной сумме, следовательно, даже при ненулевых значениях электрических моментов отдельных диполей р 0 результирующая поляризация может оказаться нулевой Р = 0.

Поляризация полярных и неполярных диэлектриков несколько отличается своим механизмом. Рассмотрим эти механизмы более подробно.

Неполярные диэлектрики — диэлектрики, в которых центры положительного и отрицательного зарядов совпадают в отсутствии внешнего электрического ноля, а молекула в этом случае не образует диполя. Примерами неполярных диэлектриков являются благородные газы, полиэтилен, тефлон; электрический момент молекул этих диэлектриков р = 0 при Е = 0, он возникает только под действием электрического ноля.

Поляризация неполярных диэлектриков. Итак, в отсутствии внешнего электрического ноля неполярный диэлектрик нс имеет поляризации (имеет нулевую поляризацию). Это вызвано тем, что центры масс положительного и отрицательного зарядов каждого атома совпадают друг с другом, и диполей не образуется. При помещении неполярного диэлектрика во внешнее электрическое ноле молекулы «растягиваются», становясь диполями. Такое «растяжение» или деформация молекул вызвана тем, что центры масс «плюсов» и «минусов» притягиваются соответствующим полюсом внешнего электрического ноля. В результате неполярный диэлектрик поляризуется (рис. 6.8).

Рис. 6.8. Поляризация неполярных диэлектриков

Поляризация неполярных диэлектриков мало зависит от температуры. Внутри диэлектрика возникает преимущественная ориентация диполей. Это означает, что в основном диполи сориентированы в определенном направлении. Четкой ориентации препятствует жесткая структура вещества диэлектрика.

А теперь важный момент. Внутри нашего диэлектрика сейчас существует собственное электрическое поле, подобно полю, возникающему в металле, находящемуся во внешнем поле. Это собственное внутреннее поле противоположно внешнему по направлению. Но, в отличие от металла, собственное поле диэлектрика не равно внешнему по величине. Следовательно, внутреннее поле диэлектрика лишь ослабляет внешнее (в е раз), а не компенсирует его полностью, как это происходит в металле. Последнее происходит из-за различий в структуре металла и диэлектрика: в металле достаточно свободных электронов для того, чтобы внутри индуцировался заряд, полностью компенсирующий внешнее поле, каким бы оно ни было. В диэлектрике же свободных зарядов нет вообще, индукции не происходит, а поляризация возникает в результате преимущественной ориентации диполей. И если таковая уже имеется, то увеличить ее уже нельзя.

Полярные диэлектрики — диэлектрики, в которых молекулы даже без воздействия внешнего электрического поля являются диполями. Примерами полярных диэлектриков являются вода, полистирол, плексиглас; электрический момент молекул этих диэлектриков р Ф 0 при Е = 0.

Поляризация полярных диэлектриков. Рассмотрим механизм поляризации полярного диэлектрика. В отсутствии внешнего электрического ноля полярный диэлектрик, состоящий из диполей, имеет суммарную поляризацию, равную нулю, поскольку диполи ориентированы хаотично и преимущественного направления их ориентации просто не существует. При помещении полярного диэлектрика во внешнее электрическое ноле диполи, аналогично неполярному диэлектрику, приобретают преимущественную ориентацию. В результате полярный диэлектрик поляризуется (рис. 6.9).

Рис. 6.9. Поляризация полярных диэлектриков

Аналогично поведению неполярного диэлектрика, полярный диэлектрик поляризуется таким образом, что ослабляет внешнее электрическое ноле в е раз. Поляризация полярных диэлектриков существенно зависит от температуры.

Зависимость диэлектрической проницаемости е от температуры. При

повышении температуры диэлектрика повышается кинетическая энергия его атомов, которая переходит в энергию их колебаний. Другими словами, увеличивается амплитуда колебаний атомов, что препятствует ориентации диполей. В результате суммарная поляризация диэлектрика ослабляется, следовательно, ослабляется и собственное электрическое ноле диэлектрика. Это приводит к тому, что такой диэлектрик хуже ослабляет внешнее иоле, т.с. диэлектрическая проницаемость диэлектрика г уменьшается. И наоборот: при понижении температуры диэлектрика его диэлектрическая проницаемость увеличивается.

Таким образом, несмотря на то, что мы считаем е = const, для полярных диэлектриков все-таки наблюдается зависимость диэлектрической проницаемости от температуры.

Пример решения задачи

Дано: имеется цилиндрический конденсатор радиуса R. Радиус внутренней обкладки конденсатора равен г. Между обкладками конденсатора находится диэлектрик с диэлектрической проницаемостью е. Диэлектрик состоит из двух слоев, толщина внутреннего слоя d. Определить падение напряжения UJU2 во внутреннем и внешнем слоях диэлектрика соответственно.

Решение. Из соотношения между напряженностью и потенциалом (6.2) следует, что отношение падений потенциалов в слоях равно отношению напряженностей в этих слоях, а именно

Определим далее общее выражение для определения напряженности ноля в цилиндрическом конденсаторе. Из выражения (6.6) следует, что

В то же время из выражения (6.5) следует

В последнее выражение подставим X из (1):

Далее определим падения напряжений в слоях

Окончательно, искомое отношение есть

Сегнетоэлектрики. Гистерезис. Некоторые полярные диэлектрики способны к самопроизвольной поляризации. Такие диэлектрики называют сегне- тоэлектриками. Примерами являются сегнетовая соль, метатитанат бария.

Процесс поляризации сегнетоэлектриков сильно нелинеен и называется гистерезисом. График такого процесса представлен на рис. 6.10 и называется петлей гистерезиса.

Сегнетоэлектрик помещается во внешнее электрическое поле Е, вследствие чего приобретает поляризованность Р (см. рис. 6.10, участок 0 —» 1). Этот процесс — нелинейный. При значительном увеличении величины внешнего электрического поля поляризованность сегнетоэлектрика достигает максимума и перестает расти по причинам, описанным выше (см. рис. 6.10, точка 1). Если затем отключить внешнее электрическое поле (участок 1 —? 2), то вещество не вернется в исходное состояние, а сохранит остаточную поляризованность (точка 2).

Рис. 6.10. Петля гистерезиса

Чтобы избавиться от остаточной поляризованное™, необходимо поместить сегнетоэлектрик в электрическое поле противоположного направления, имеющее определенное значение (точка 3). Величина этого поля называется коэрцитивной силой. То есть коэрцитивная сила — это такое значение внешнего поля, которое нужно приложить, чтобы снять остаточную поляризованное™. Далее процесс намагничивания сегнетоэлектрика повторяется так как показано на рис. 6.10.

Заметим, что никаким способом нельзя вернуть сегнетоэлектрик в исходное состояние (точку 0).

Свойство гистерезиса проявляется лишь в определенном интервале температур. При температурах выше некоторой Т > ГКи, называемой точкой Кюри сегнетоэлектрик теряет свои свойства и становится обычным полярным диэлектриком.

Для диэлектриков характерно и еще одно свойство под названием пьезоэффект.

Прямой пьезоэффект — поляризация диэлектрика под действием механического воздействия на диэлектрик (растяжение, сжатие). Механизм поляризации проиллюстрирован на рис. 6.11. [1]

Рис. 6.11. Прямой ньезоэффект

На рис. 6.11 изображена электрически нейтральная молекула пьезоэлектрика, которая при механической деформации меняет свою геометрию. В результате центры масс положительных и отрицательных зарядов смещаются и возникают условия для возникновения поляризации. Прямой пьезоэффект применяется в пьезозажигалках, манометрах, датчиках механических напряжений, измерителях вибрации, микроэлектронике.

Обратный ньезоэффект часто проявляется в виде вибрации пластинки пьезоэлектрика иод действием переменного электрического поля. Другими словами, электрическое ноле, воздействуя на ньезоэлемент, вызывает механическую деформацию (изменение размеров) пьезоэлемента. Обратный ньезоэффект применяется для возбуждения ультразвука, стабилизации частоты электрических колебаний (например, в электронных часах).

Диэлектрики в электрическом поле.

Диэлектрики (или изоляторы) — вещества, относительно плохо проводящие электрический ток (по сравнению с проводниками).

Термин «диэлектрик» (от греч. dia — через и англ. electric — электрический) был введен М. Фарадеем для обозначения веществ, через которые передаются электромагнитные взаимодействия.

В диэлектриках все электроны связаны, т. е. принадлежат отдельным атомам, и электричес­кое поле не отрывает их, а лишь слегка смещает, т. е. поляризует. Поэтому внутри диэлектрика может существовать электрическое поле, диэлектрик оказывает на электрическое поле опре­деленное влияние.

Диэлектрики делятся на полярные и неполярные.

Полярные диэлектрики состоят из молекул, в которых центры распределения положительных и отрицательных зарядов не совпадают. Такие молекулы можно представить в виде двух одинаковых по модулю разноименных точечных зарядов, находящихся на некотором расстоянии друг от друга, называемых диполем.

Неполярные диэлектрики состоят из атомов и молекул, у которых центры распределения положительных и отрицательных зарядов сов­падают.

Поляризация полярных диэлектриков .

Помещение полярного диэлектрика в электростатическое поле (например, между двумя заря­женными пластинами) приводит к развороту и смещению до этого хаотически ориентированных диполей вдоль поля.

Разворот происходит под действием пары сил, приложенных со стороны поля к двум зарядам диполя.

Смещение диполей называется поляризацией. Однако из-за теплового движения происходит лишь частичная поляризация. Внутри диэлектрика положительные и отрицательные заряды диполей компенсируют друг друга, а на поверхности диэлектрика появляется связанный заряд: отрицательный со стороны положительно заряженной пластины, и наоборот.

Поляризация неполярных диэлектриков .

Неполярный диэлектрик в электрическом поле также поляризуется. Под действием электрического поля положительные и отрицательные заряды в молекуле смещаются в противоположные стороны, так что центры распределения зарядов смещаются, как у полярных молекул. Ось наве­денного полем диполя ориентирована вдоль поля. На поверхностях диэлектрика, примыкающих к заряженным пластинам, появляются связанные заряды.

Поляризованный диэлектрик сам создает электрическое поле .

Это поле ослабляет внутри диэлектрика внешнее элект­рическое поле . Степень этого ослабления зависит от свойств ди­электрика. Уменьшение напряженности электростатического поля в веществе по сравнению с полем в вакууме характеризуется относи­тельной диэлектрической проницаемостью среды.

Относительная диэлектрическая проницаемость среды ɛ — это физическая величина, показывающая, во сколько раз модуль напряженности электростатического поля E внутри однородного диэлект­рика меньше модуля напряженности поля E0 в вакууме:

В соответствии с этим сила взаимодействия зарядов в среде в ɛ раз меньше, чем в вакууме:

.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий