Что такое лазерный луч

Что такое лазер в физике простыми словами

Обновлено: 02 Июня 2021

  • Что такое лазер
  • Принцип работы лазера
    • Как создается лазерный луч
    • Свойства лазерного излучения
  • Типы лазеров
  • Области применения лазерных технологий
  • Что такое лазер
  • Принцип работы лазера
    • Как создается лазерный луч
    • Свойства лазерного излучения
  • Типы лазеров
  • Области применения лазерных технологий

Еще 30-40 лет назад слово «лазер» ассоциировалось с фантастическими фильмами и голливудскими спецэффектами. Сейчас эта технология прочно вошла в повседневную жизнь людей. Рассказываем, как и где она применяется.

Что такое лазер

Лазер, или оптический квантовый генератор — это устройство, которое предназначено для преобразования электрической, тепловой и других видов энергии в узконаправленное излучение, характеризующееся когерентностью, монохроматичностью и поляризованностью.

Названа эта технология по первым буквам англоязычного выражения — Light Amplification by Stimulated Emission of Radiation (LASER) и переводится как «усиление света с помощью вынужденного излучения».

Изобретение лазера — это не одномоментное открытие, над ним работали многие ученые с начала XX века. Самые известные из них — Эйнштейн, Майман, Басов, Прохоров, Таунс.

Альберт Эйнштейн в 1917 году презентовал научную работу, в которой предсказал основной принцип работы оптического квантового генератора — вынужденное излучение. Гений был уверен в возможности заставить электроны излучать свет необходимой человеку длины волны.

Теодору Майману, калифорнийскому физику, в мае 1960 года удалось претворить эту идею в жизнь. Лазер, в работе которого использовались кристалл рубина и резонатор Фабри — Перо работал импульсно, длина волны составляла 694,3 нм.

В СССР также активно велись исследования на эту тему. В 1952 году два советских академика Александр Прохоров и Николай Басов выяснили, что возможно создание лазера, который будет работать на аммиаке. В 1954 году американец Чарлз Таунс создал такой генератор и показал принцип его работы.

Принцип работы лазера

Заключается в создании интенсивного светового луча, который имеет одинаковую длину волны в одно и то же время. Чтобы понять, как этот процесс происходит, рассмотрим конструкцию устройства.

Любой оптический квантовый генератор состоит из 3-х частей:

  1. Активная среда. Важнейший компонент для обеспечения лазерного излучения. Активной средой является специальное вещество, в качестве которого могут быть использованы твердые кристаллы, газы или жидкости, сформированные в стержень (цилиндр).
  2. Источник энергии. В этом качестве, как правило, выступает импульсная лампа, которая устанавливается рядом с активной зоной — цилиндром или стержнем.
  3. Резонатор (кроме тех случаев, когда лазер используют как усилитель). Это устройство представляет собой два параллельных друг другу зеркала. Переднее наполовину прозрачное, заднее не пропускает свет.

Как создается лазерный луч

Лазерный луч создается внутри корпуса генератора. Так называется трубка, закрытая с одной стороны обычным зеркалом, с другой — не полностью прозрачным зеркалом. Внутри корпуса находится твердый кристалл (чаще всего используют рубин). Под воздействием электрообмотки атомы кристалла создают световые волны. Эти волны двигаются внутри корпуса от одного зеркала к другому до тех пор, пока не наберут такую интенсивность, которой будет достаточно, чтобы пройти через не полностью прозрачное зеркало.

Свойства лазерного излучения

Основными свойствами являются:

  1. Монохроматичность. Так как длина волны света в лазере одинаковая, весь пучок также будет одного цвета.
  2. Когерентность. Пучок света считается когерентным, когда есть фиксированная связь фаз между напряженностью электромагнитного поля в разных точках пространства или в разное время.
  3. Сфокусированность. В сравнении с естественным светом, который обладает рассеиванием и ослаблением в зависимости от расстояния, лазерное излучение четко сфокусировано в одном интенсивном пучке света и не слабеет при передаче на большие расстояния.
  4. Высокая температура. Это происходит из-за монохроматичности излучения и большой плотности энергии. Так, температура излучения импульсного лазера мощностью 1015 Вт составляет более 100 миллионов градусов.

Типы лазеров

Существует классификация оптических квантовых генераторов по агрегатному состоянию лазерного вещества и способу его возбуждения. Так, лазеры делятся на:

  1. Твердотельные.
  2. Газовые.
  3. Жидкостные.
  4. Полупроводниковые.

Твердотельные появились самыми первыми. В них активная среда состояла из кристаллов, а источником энергии служила импульсная лампа. В настоящее время твердотельные оптические квантовые генераторы бывают:

  • рубиновыми;
  • титан-сапфировыми;
  • александритовыми;
  • оптоволоконными;
  • на алюмоиттриевом гранате;
  • на неодимовом стекле;
  • на фториде кальция и др.

Газовыми называют генераторы, в которых активная среда формируется из газов или их смесей с очень низким давлением. Источником энергии выступает разряд электричества, производимый генератором высоких частот. Газовый генератор характеризуется непрерывностью излучения. В таких лазерах используется длинный стержень активной среды, это связано с невысокой плотностью газов. Интенсивность излучения обеспечивает масса активного вещества.

Газовые лазеры подразделяются на:

  1. Газодинамические. Принцип работы этого вида генератора похож на работу реактивного двигателя. В нем происходит сгорание топлива, в которое добавлены частицы газов активной среды. В процессе горения, а затем охлаждения молекулы отдают энергию, создавая мощное излучение.
  2. Химические. Импульс появляется в результате реакции. Самый мощный лазер этого типа работает на атомарном фторе в реакции с водородом.
  3. Эксимерные. Действие обеспечивают молекулы благородных газов, способных существовать лишь в возбужденном состоянии.

Современные газовые лазеры бывают:

  • гелий-неоновыми;
  • криптоновыми;
  • ксеноновыми;
  • азотными;
  • кислородно-йодными;
  • углекислотными и др.

В жидкостных генераторах для создания активной среды применяют растворы органических соединений. Их плотность выше, чем плотность газа, и ниже, чем плотность твердых тел. Такие лазеры могут создавать излучение до 20 Вт, при этом объем активного вещества остается сравнительно небольшим. Лазеры данного типа работают как в импульсном, так и в непрерывном режимах. В качестве источника энергии используют импульсные лампы или другие лазеры.

Для полупроводниковых лазеров в качестве активной среды используют кристалл со свойствами полупроводника (чаще всего, арсенид галлия GaAs). От твердотельных они отличаются тем, что излучательные переходы здесь происходят не на уровне атомов, а между зонами кристалла. Источником энергии таких генераторов является постоянный электрический ток. Кристалл-полупроводник выполняет роль резонатора.

Области применения лазерных технологий

Открытие лазерного излучения имеет огромное значение для человечества. Благодаря уникальным свойствам, использовать лазеры можно в разных сферах жизни:

  • в промышленности;
  • в военных разработках;
  • в медицине;
  • в развлекательной индустрии;
  • в быту.

Технологические лазеры непрерывного действия активно используют в промышленности, чтобы разрезать или спаивать детали. Благодаря применению технологии стало возможным сваривание металла и керамики, в результате чего получился новый материал — металлокерамика. Также лазерный луч активно используют в изготовлении микросхем.

В военных целях при помощи технологии разрабатываются новые виды оружия. Лучи газовых лазеров наземного или орбитального базирования способны вывести из строя как спутники, так и самолеты вражеской стороны. Также их можно использовать в разведке. Во многих странах активно ведутся разработки лазерных пистолетов.

В медицине технология уже много лет применяется в офтальмологии, при проблемах пациентов с сетчаткой глаза и коррекции зрения. В хирургии доктора используют лазерные скальпели, которые наносят минимальные повреждения живым тканям. Освоила технологию косметология.

Лазерные шоу — неотъемлемая часть концерта, выступления звезды и других праздничных мероприятий. Эти технологии давно и активно используют в сфере развлечений.

Сами того не осознавая, мы каждый день пользуемся лазерами, которые вывели на новый уровень технику записи информации. Именно при помощи луча записываются и воспроизводятся файлы на компакт-дисках с музыкой, фото и фильмами.

Строение и назначение лазеров — сложная тема. Поэтому важно, чтобы в любой момент можно было обратиться за помощью к надежному источнику. Как раз такими качествами и обладает сервис Феникс.Хелп.

Что такое лазер? Принцип работы и применение.

Сложно в наше время найти человека, который никогда не слышал бы слова «лазер», однако чётко представляют, что это такое, весьма немногие.

За полвека с момента изобретения лазеры разных видов нашли применение в широком спектре направлений, от медицины до цифровой техники. Так что же такое лазер, каков принцип его действия, и для чего он нужен?

Что такое лазер?

Возможность существования лазеров была предсказана Альбертом Эйнштейном, который ещё в 1917 году опубликовал работу, говорящую о возможности излучения электронами квантов света определённой длины. Это явление было названо вынужденным излучением, но долгое время оно считалось нереализуемым с технической точки зрения.

Однако с развитием технических и технологических возможностей создание лазера стало делом времени. В 1954 году советские учёные Н. Басов и А. Прохоров получили Нобелевскую премию за создание мазера – первого микроволнового генератора, работающего на аммиаке. А в 1960 году американец Т. Мейман изготовил первый квантовый генератор оптических лучей, названный им лазером (Light Amplification by Stimulated Emission of Radiation). Устройство преобразовывает энергию в оптическое излучение узкой направленности, т.е. световой луч, поток квантов света (фотонов) высокой концентрации.

Принцип функционирования лазера

Явление, на котором основана работа лазера, называется вынужденным, или индуцированным, излучением среды. Атомы определённого вещества могут испускать фотоны под действием других фотонов, при этом энергия воздействующего фотона должна быть равной разности между энергетическими уровнями атома до излучения и после него.

Излучённый фотон является когерентным тому, который вызвал излучение, т.е. в точности подобен первому фотону. В результате слабый поток света в среде усиливается, причём не хаотично, а в одном заданном направлении. Образуется луч вынужденного излучения, которое и получило название лазера.

Классификация лазеров

По мере исследования природы и свойств лазеров были открыты различные виды этих лучей. По виду состояния исходного вещества лазеры могут быть:

  • газовыми;
  • жидкостными;
  • твердотельными;
  • на свободных электронах.


В настоящее время разработано несколько способов получения лазерного луча:

  • при помощи электрического тлеющего либо дугового разряда в газовой среде – газоразрядные;
  • при помощи расширения горячего газа и создания инверсий населённости – газодинамические;
  • при помощи пропускания тока через полупроводник с возбуждением среды – диодные или инжекционные;
  • путём оптической накачки среды лампой-вспышкой, светодиодом, другим лазером и т. д.;
  • путём электронно-лучевой накачки среды;
  • ядерной накачкой при поступлении излучения из ядерного реактора;
  • при помощи особых химических реакций – химические лазеры.

Все они обладают своими особенностями и отличиями, благодаря которым находят применение в различных сферах промышленности.

Практическое использование лазеров

На сегодняшний день лазеры разных типов применяются в десятках отраслей промышленности, медицины, IT технологий и других сферах деятельности. С их помощью осуществляются:

  • резка и сварка металлов, пластмасс, других материалов;
  • нанесение изображений, надписей и маркировка поверхности изделий;
  • сверление сверхтонких отверстий, прецизионная обработка полупроводниковых кристаллических деталей;
  • формирование покрытий изделий напылением, наплавкой, поверхностным легированием и т.д.;
  • передача информационных пакетов при помощи стекловолокна;
  • выполнение хирургических операций и других лечебных воздействий;
  • косметологические процедуры омоложения кожи, удаления дефектных образований и др.;
  • наведение на цель различных видов вооружений, от стрелкового до ракетного оружия;
  • создание и использование голографических методов;
  • применение в различных научно-исследовательских работах;
  • измерение расстояний, координат, плотности рабочих сред, скорости потоков и многих других параметров;
  • запуск химических реакций для проведения различных технологических процессов.


Существует ещё немало направлений, в которых лазеры уже используются или найдут применение в самое ближайшее время.

Физика для “чайников”: основы работы лазеров

  • 12 Январь 2021
  • 7 минут
  • 33 175
  • 1

Лазеры давно вошли в нашу жизнь повседневную жизнь. С одной стороны, почти у каждого дома или на работе есть лазерный принтер, к которому все привыкли. С другой – лезерные мечи все так же будоражат воображение тех, кто первый раз (да и не первый тоже) смотрит Звездные Войны. В данной статье мы на элементарном уровне разберем, что такое лазер, а также рассмотрим физические основы работы этого хитрого понятия.

Что такое лазер?

Интересный факт: знаете ли Вы, что до появления лазеров были мазеры?

Мазер – квантовый генератор, излучающий когерентные микроволны (волны сантиметрового диапазона)

Мазер – это аббревиатура, от английского microwave amplification by stimulated emission of radiation, что в переводе означает “усиление микроволн с помощью вынужденного излучения”. Мазер был изобретен в 1950-х годах, на несколько лет раньше лазера.

Мазеры и лазеры работают по одному и тому же принципу. Отличие состоит в том, что мазеры усиливают волны разного диапазона. Мазер – это усиление микроволн, а лазер – усиление света, то есть волн видимого диапазона.

Лазерные мечи

Лазер (от ight amplification by stimulated emission of radiation – «усиление света посредством вынужденного излучения») – устройство, которое преобразует энергию накачки в энергию монохроматического, поляризованного и узконаправленного потока излучения.

Среди всех этих умных слов для понимания принципа работы лазера нужно выделить два – «вынужденного излучения». Это именно то, что лежит в основе работы лазера.

Именно явление вынужденного излучения лежит в основе работы лазера. В чем суть?

Вынужденное излучение

Мы знаем, что атом может находиться в разных энергетических состояниях. В самом простом случае состояний всего два – основное и возбужденное. Электроны вращаются вокруг ядра атома по орбитам, которые соответствуют определенным энергиям. При определенных условиях электрон может как бы перескакивать с одной орбиты на другую и обратно. Т.е. электроны, вращающиеся вокруг ядра, могут переходить с одного энергетического уровня на другой. Причем если электрон переходит с более высокого энергетического уровня на нижний, выделяется энергия. Для перехода с нижнего уровня на верхний или наоборот, энергию электрону нужно сообщить.

Излучение атома

А теперь представим, что у нас есть атом в возбужденном состоянии, и на него налетает фотон с энергией, равной разности энергий уровней атома. В таком случае наш атом испустит точно такой же фотон, а электрон с высшего уровня энергии перейдет на более низкий. Это и есть вынужденное излучение. Различают также спонтанное излучение, когда возбужденный атом самопроизвольно испускает фотон.

Как это явление работает в лазерах?

Представим себе самый простой лазер, состоящий из системы накачки, рабочей среды и оптического резонатора. Система накачки необходима, чтобы сообщить рабочей среде энергию, которая будет преобразована в энергию излучения, и создать инверсию населенностей энергетических уровней. Например, если рабочим телом нашего лазера являются атомы с всего двумя энергетическими состояниями, то для работы лазера необходимо, чтобы возбужденные атомы превышали по количеству невозбужденные. Инверсия населенностей – основа того, чтобы генерация излучения в лазере могла начаться. Как сделать презентацию в ворде вы можете в обзорной статье наших авторов.

Твердотельный лазер

Рабочим телом лазера могут быть как твердые тела, так и жидкости с газами. Физическая суть работы всех этих приборов остается одной и той же. Кстати, первый в мире лазер был рубиновым, т.е. имел в качестве рабочего тела кристалл рубина.

Когда инверсия населенностей достигнута, возбужденные атомы рабочей среды начинают излучать фотоны (спонтанное излучение). Чтобы процесс не «угас», необходимо обеспечить обратную связь. В простейшем случае роль оптического резонатора играют два зеркала, одно из которых пропускает часть фотонов (полупрозрачно), а второе – отражает. Таким образом, определенная часть испущенных фотонов остается в рабочем пространстве, индуцируя излучение все новых и новых атомов, от чего процесс начинает развиваться лавинообразно и лазер светит.

Работа лазера

Надеемся, Вы стали чуточку эрудированнее после прочтения этой статьи. Если у Вас есть более глубинные и фундаментальные вопросы по теме «лазеры», помните – среди наших авторов есть люди, готовые в любой момент ответить на них.

Удачи, и да прибудет с Вами сила!

  • Контрольная работа от 1 дня / от 100 р. Узнать стоимость
  • Дипломная работа от 7 дней / от 7950 р. Узнать стоимость
  • Курсовая работа 5 дней / от 1800 р. Узнать стоимость
  • Реферат от 1 дня / от 700 р. Узнать стоимость

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Лазерное излучение – красный и зеленый лазер, безопасность лазеров

Лазер – акроним от Light Amplification by Stimulated Emission of Radiation, что дословно переводится “усиление света посредством вынужденного излучения” – это устройство, преобразующее энергию накачки в энергию узконаправленного потока излучения.

Существует большое количество различных типов лазеров. Их можно разделять на группы по источнику накачки, рабочему телу, области применения. Т.к. в данной статье лазеры будут рассмотрены в контексте безопасности работы с лазерными нивелирами и дальномерами, то внимание будет обращено на такие параметры, как рабочая длина волны (нм) и мощность излучения (мВт).

Длина волны, если она находится в видимом диапазоне, обуславливает цвет лазерного луча. Мощность излучения обуславливает яркость луча, те или иные возможности (прицеливание, демонстрация оптических эффектов, считывание штрих-кодов, резка и сварка материалов, лазерная хирургия, накачка других лазеров).

Излучение в лазерных нивелирах и дальномерах работает как обычная лазерная указка – портативный генератор когерентных и монохроматических электромагнитных волн видимого диапазона в виде узконаправленного луча. Изготавливается на основе красного лазерного диода, который излучает в диапазоне 635-670 нм. Мощность их излучения не превышает 1,0 мВт.

Лазерное излучение представляет существенную опасность для глаз, так как это излучение хорошо фокусируется хрусталиком на сетчатке глаза. В то же время бытовые лазерные приборы имеют малую ширину пучка, что обеспечивает высокую поверхностную плотность энергии в поперечном сечении луча. Именно высокая плотность энергии и может вызвать ожоги и другие повреждения. Лазеры большей мощности способны вызывать поражения глаз даже рассеянным излучением. Прямое, а в некоторых случаях и рассеянное излучение такого лазера способно вызывать ожоги кожи (вплоть до полного разрушения) и представляет пожарную опасность.

Существует несколько классификаций опасности лазеров, которые, однако, весьма похожи. Ниже приведена наиболее распространенная международная классификация.

Класс 1
Лазеры и лазерные системы очень малой мощности, не способные создавать опасный для человеческого глаза уровень облучения. Излучение систем класс 1 не представляет никакой опасности даже при долговременном прямом наблюдении глазом. К классу 1 относятся также лазерные устройства с лазером большей мощности, имеющие надежную защиту от выхода луча за пределы корпуса
Класс 2
Маломощные видимые лазеры, способные причинить повреждение человеческому глазу в том случае, если специально смотреть непосредственно на лазер на протяжении длительного периода времени. Такие лазеры не следует использовать на уровне головы. Лазеры с невидимым излучением не могут быть классифицированы как лазеры 2-го класса. Обычно к классу 2 относят видимые лазеры мощностью до 1 мВт
Класс 2a
Лазеры и лазерные системы класса 2a, расположенные и закрепленные таким образом, что попадание луча в глаз человека при правильной эксплуатации исключено
Класс 3a
Лазеры и лазерные системы с видимым излучением, которые обычно не представляют опасность, если смотреть на лазер невооружённым взглядом только на протяжении кратковременного периода (как правило, за счет моргательного рефлекса глаза). Лазеры могут представлять опасность, если смотреть на них через оптические инструменты (бинокль, телескоп). Обычно ограничены мощностью 5 мВт. Во многих странах устройства более высоких классов в ряде случаев требуют специального разрешения на эксплуатацию, сертификации или лицензирования
Класс 3b
Лазеры и лазерные системы, которые представляют опасность, если смотреть непосредственно на лазер. Это же относится и к зеркальному отражению лазерного луча. Лазер относится к классу 3b, если его мощность более 5 мВт
Класс 4
Лазеры и лазерные системы большой мощности, которые способны причинить сильное повреждение человеческому глазу короткими импульсами (
Когда в 2007 году у производителей появилась возможность использовать зеленые диоды, то все думали, что зеленый лазер неминуемо в скорости полностью заменит красный. Прошло 7 лет, и что же мы видим? У редких производителей среди всей линейки остались 1-2 модели с зеленым лазером. Зеленому лазеру не удалось сместить лазер красный. Возможно, он не дал того эффекта, которого от него ждали.
Чтобы разобраться, необходимо обратиться к физической стороне вопроса и выяснить, в чем различия и сходства красного и зеленого луча.

Устроены зеленые лучи более сложно: первый лазер, инфракрасный, длиной волны 808 нм, светит в кристалл Nd:YVO4 – получается лазерное излучение с длиной волны 1064 нм. Оно попадает на кристалл «удвоителя частоты» – и получается 532 нм.

Главный плюс зеленых лазеров – 532 нм очень близко к максимальной чувствительности глаза, и как точка или плоскость, так и сам луч очень хорошо видны. Даже 5мВт зеленый лазер светит ярче, чем 200мВт красный (на фото). Однако у зеленых лазеров есть и большая опасность. Излучение 1064 нм сфокусировано почти так же, как и зеленое и представляет основную опасность при попадании в глаз на большой дистанции, тогда как излучение 808 нм сильно расфокусировано и опасно только на расстоянии нескольких метров. Иными словами, поражающая способность зеленого лазера для глаза намного больше, чем кажется.

В некоторых лазерах есть инфракрасный фильтр, но это значительно увеличивает цену прибора, значит может присутствовать только в дорогих моделях. Так же стоит заметить, что зеленые диоды, устройства которые излучают зеленый луч, значительно дороже при производстве (в несколько раз по причине большего числа брака по сравнению с красным). А рабочий ресурс зеленого диода значительно ниже. Суммарно это отражается на конечной стоимости нивелира лазерного. В итоге получается следующая картина. Нивелир лазерный с зеленым лучом строит проекции, которые лучше видны, ресурс такого прибора ниже, стоимость выше (порой у один производитель за одинаковые модели отличающиеся лишь лазером выставляет цену отличающуюся в 1,5-2 раза).

Следует отметить, что по заявленным производителями нивелиров характеристикам мощность такого лазера до 2,7 мВт (у красного до 1,0 мВт), а безопасность по классу 3 (у красного 2).

Подведем итог, зеленый цвет лазера действительно лучше виден в условиях дневного света, чем красный, но нельзя забывать о том, что он значительно небезопаснее и неоправданно дорог.

Лазерный мир

Что такое лазер? И зачем он нужен?

Лазер – одно из наиболее ярких и полезных изобретений XX века, открывшее перед человечеством огромное количество новых направлений деятельности.

Сегодня лазеры получили такое широкое распространение в нашей жизни, что тяжело представить, что с момента их изобретения прошло всего 50 лет!

А если быть точнее, то первый лазер был создан 16 мая 1960 года физиком из Калифорнии Теодором Мейнманом (Theodore H. Maiman). Этот лазер работал на кристалле рубина с резонатором Фабри-Перо, а в качестве источника накачки использовалась лампа-вспышка. Лазер работал в импульсном режиме на длине волны 694,3 нм.

В основу этого изобретения легла теория вынужденного излучения, выдвинутая Эйнштейном в 1917 г. Согласно теории, кроме процессов спонтанного поглощения и излучения света существует возможность вынужденного (или стимулированного) излучения, когда можно «заставить» электроны излучить свет определенной длины волны одновременно.

Так что же такое лазер?

Ла́зер (от англ. LASER — Light Amplification by Stimulated Emission of Radiation, что в переводе на русский означает «усиление света посредством вынужденного излучения»), или опти́ческий ква́нтовый генера́тор — это устройство, преобразующее энергию накачки (световую, электрическую, тепловую, химическую и др.) в энергию когерентного, монохроматического, поляризованного и узконаправленного потока излучения.

То есть, это луч света, испускаемый синхронными источниками, в узком направленном диапазоне. Такой чрезвычайно сконцентрированный световой поток.

Как работает лазер?

Принцип работы лазера основан на явление вынужденного (индуцированного) излучения. Суть явления состоит в том, что возбуждённый атом способен излучить фотон под действием другого фотона без его поглощения, если энергия последнего равняется разности энергий уровней атома до и после излучения. При этом излучённый фотон когерентен фотону, вызвавшему излучение (является его «точной копией»). Таким образом происходит усиление света. Этим явление отличается от спонтанного излучения, в котором излучаемые фотоны имеют случайные направления распространения, поляризацию и фазу.

Типы лазеров:

Лазеры могут определяться на основе множества признаков, но чаще всего используется классификация

по принципу агрегатного состояния лазерного вещества:

  1. Газовые;
  2. Жидкостные;
  3. Лазеры на свободных электронах;
  4. Твердотельные.

По способу возбуждения лазерного вещества:

  1. Газоразрядные лазеры (в тлеющих, дуговых разрядах, в разрядах на полых электродах);
  2. Газодинамические лазеры (с созданием инверсий населенностей путем расширения горячих газов)
  3. Инжекционные, или диодные лазеры (с возбуждением за счет прохождения тока в полупроводнике);
  4. Лазеры с оптической накачкой (возбуждение с помощью лампы-вспышки, лампы непрерывного горения, другого лазера, светодиода);
  5. Лазеры с электронно-лучевой накачкой (специальные типы газовых и полупроводниковых лазеров)
  6. Лазеры с ядерной накачкой (с возбуждением посредством излучения из атомного реактора или в результате ядерного взрыва);
  7. Разные лазерные системы обладают разными уникальными свойствами и находят свое особенное применение.
  8. Химические лазеры (с возбуждением на основе химических реакций).

Применение лазеров.

С момента своего изобретения лазеры зарекомендовали себя как «готовые решения ещё неизвестных проблем». В силу уникальных свойств излучения лазеров, они широко применяются во многих отраслях науки и техники, а также в быту.

  1. Передача информации по стекловолокнам
  2. Лазерная обработка материалов:
    • маркировка и художественная гравировка
    • резка
    • сварка
  3. В микроэлектронике для прецизионной обработки материалов (резка полупроводниковых кристаллов, сверление особо тонких отверстий в печатных платах).
  4. для получения поверхностных покрытий материалов (лазерное легирование, лазерная наплавка, вакуумно-лазерное напыление) с целью повышения их износостойкости.
  5. Лазеры в медицине и биофотонике
    • лазерная хирургия
    • биофотоника и медицинская диагностика
    • офтольмология (лечение катаракта, отслоение сетчатки, лазерная коррекция зрения и др.).
  6. Косметологии (лазерная эпиляция, лечение сосудистых и пигментных дефектов кожи, лазерный пилинг, удаление татуировок и пигментных пятен).
  7. Термоядерная реакция с применением лазеров
  8. В военных целях:
    • как средство наведения и прицеливания.
    • ракетное оружие на основе лазерного излучения
  9. Астрономия:
    • Лидар: уточнил значения ряда фундаментальных астрономических постоянных и параметры космической навигации, расширил представления о строении атмосферы и поверхности планет Солнечной системы.
    • В астрономических телескопах, с адаптивной оптической системой коррекции атмосферных искажений, лазер применяют для создания искусственных опорных звезд в верхних слоях атмосферы.
  10. Использование лазеров в области научных исследований
  11. Голография и интерферометрия
  12. Метрология и измерительная техника. Измерение: расстояния (лазерные дальномеры), времени, давления, температуры, скорости потоков жидкостей и газов, угловой скорости (лазерный гироскоп), концентрации веществ, оптической плотности, разнообразных оптических параметров и характеристик, в виброметрии и др.
  13. Лазерная химия. Для запуска и анализа химических реакций Лазерное излучение позволяет обеспечить точную локализацию, дозированность, абсолютную стерильность и высокую скорость ввода энергии в систему.
  14. Лазеры в приборах и оборудовании
    • Устройства считывания штриховых кодов
    • В лазерной мыши и лазерной клавиатуре
    • Audio-CD, CD-ROM, DVD, Blu-ray disc
    • Лазерные принтеры
    • Лазерные пико-проекторы

Что такое лазерный луч

Изучение устройства и принципа работы He–Ne лазера

Содержание

Введение

Оптический квантовый генератор (лазер) — это источник света со свойствами, резко отличающимися от всех других источников (ламп накаливания, люминесцентных ламп, пламени, естественных светил и т. д.).

Название «ЛАЗЕР» — это аббревиатура английской фразы Light Amplification by Stimulated Emission of Radiation (LASER) – усиление света посредством вынужденного излучения.

В настоящее время созданы лазеры, генерирующие излучение в инфракрасном, видимом и ультрафиолетовом диапазоне длин волн.

Важнейшими типами лазеров являются твёрдотельные, полупроводниковые, жидкостные и газовые. Более точная классификация ориентирована на способ накачки (оптический, тепловой, химический, электрический, газодинамический и т.д.) и режим работы(непрерывный или импульсный).

  • Лазерное излучениехарактеризуется очень высокой направленностью. Угол расходимости луча газового лазера составляет несколько угловых минут. Он в тысячи раз меньше угла расходимости лучших прожекторов.
  • Излучение газовых и многих твердотельных квантовых генераторов монохроматично. Спектральная ширина линии такого излучения во много раз меньше спектральной ширины всех обычных источников света. К настоящему времени созданы уникальные лазеры с шириной линии всего несколько герц. Для сравнения заметим, что естественная ширина желтых линий паров натрия равна примерно 2⋅107 Гц = 10 МГц.
  • Лазеры излучают свет высокой степенью когерентности. Это означает, что фазы электромагнитных волн, испускаемых различными атомами активного элемента, или одинаковы, или взаимосогласованы. Излучение всех других стандартных источников некогерентно. Кроме того, у излучения лазера большая длина когерентности, то есть наибольшее расстояние вдоль направления распространения волны, на котором колебания можно считать еще когерентными между собой.

Для многих лабораторных и практических целей удобны гелий-неоновые (He–Ne) лазеры. Они работают в непрерывном режиме и в видимой области спектра. Длина волны основного излучения He–Ne лазера 0,6328 мкм .

Принцип работы лазера

Когда среда поглощает энергию (доставленную любым способом, например, фотонами), то ее часть запасается (поглощается) в виде энергии возбужденных атомов или молекул (рис.1, а). Молекула, атом или ион из возбужденного состояния может перейти на более низкий энергетический уровень (рис.1, б) самопроизвольно (спонтанно) или под действием внешнего электромагнитного излучения (рис.1, в) с частотой ν (вынужденно). Эти переходы могут сопровождаться излучением, называемым соответственно спонтанным или вынужденным, причем частота излучения определяется соотношением:

где Ej и Ei — энергетические уровни, между которыми осуществляется переход, сопровождающийся излучением кванта энергии, дополнительного к кванту внешнего электромагнитного излучения, его вызвавшему.

Если кванты спонтанного излучения испускаются в случайных направлениях, то квантвы нужденного излучения испускается в том же направлении, что и квант внешнего электромагнитного поля.Причем частота, фаза и поляризация вынужденного и внешнего излучений совпадают,то есть оба кванта полностью тождественны(рис. 1, в).

Под действием электромагнитного излучения могут происходить переходы не только с болеевысокогоэнергетического уровняна болеенизкий, но и в обратном направлении, что соответствует акту поглощения.

Для того чтобы преобладали переходы, при которых происходит излучение энергии, необходимо создать инверсную населенность возбужденного уровня Ej, то есть создать повышенную концентрацию атомов или молекул на этом уровне.

При термодинамическом равновесии распределение молекул по энергетическим состояниям определяется законом Больцмана:

где N – число молекул, находящихся при температуре Т в состоянии с энергией E; N0 – число молекул в основном состоянии при той же температуре.

Если каким-либо способом создать населенность верхнего уровня больше, чем нижнего, то говорят, что данное вещество будет иметь инверсную населенность, то есть обратную той, которая следует из распределения Больцмана. При облучении вещества в этом случае будут преобладать переходы с верхнего уровня на нижний. Это приведет к усилению падающего на вещество света.

Состояние вещества, в котором создана инверсная населенность энергетических уровней, называется активным, а среда, состоящая из такого вещества — активной средой.

Сам процесс создания инверсной населенности уровней называется накачкой.

Методы накачки разнообразны и зависят от типа лазера: твердотельного, жидкостного, газового, полупроводникового и т.п. Основная задача процесса накачки может быть рассмотрена на примере трехуровневого лазера (рис. 2).

Для создания инверсной населенности на уровне II по отношению к уровню I молекулы (атома или иона) электроны внешним излучением сначала переводятся с энергетического уровня I на уровень III. Уровень III должен быть таким, чтобы время жизни электронов на нем, то есть время возможного пребывания их в этом состоянии, было очень малым (например, 10 -8 с). Если время жизни электронов на уровне II будет значительно больше, скажем 10 -3 с, то электроны, спонтанно без излучения переходя с уровня III, будут накапливаться на уровне II (который называется метастабильным) и при достаточно мощной накачке их число значительно превысит число электронов на уровне I. Созданная таким образом инверсная населенность обеспечит условия для усиления излучения. Однако генерация оптических колебаний может возникнуть только в том случае, если вынужденное излучение, раз возникнув, будет вызывать новые акты вынужденного излучения. Для создания такого процесса активную среду помещают в оптический резонатор.

Оптический резонатор представляет собой систему двух зеркал, между которыми располагается активная среда (рис.3). Зеркала могут быть плоскими, выпуклыми или вогнутыми. Важнейшее их свойство — высокие значения коэффициента отражения. Используются зеркала с многослойным диэлектрическим покрытием, обладающие сильным отражением и почти не поглощающие света. Коэффициент отражения одного зеркала составляет обычно около 0,5 (то есть 50%), другого не менее 0,98 (то есть почти 100%). Оптические поверхности зеркал обрабатываются с точностью до сотых долей рабочей длины волны света и устанавливаются строго параллельно друг другу — непараллельность не должна превышать 5 угловых секунд.

Для выяснения роли системы зеркал вернемся к рис.2. Между зеркалами располагается активная среда, состоящая из огромного числа одинаковых молекул. С уровня II на уровень I могут происходить и спонтанные и вынужденные переходы. При спонтанном переходе одного из электронов испускается фотон, который вызывает вынужденные переходы электронов других молекул, тоже сопровождающиеся излучением фотонов. Эти фотоны вызывают вынужденный переход следующих встретившихся на их пути молекулах и т.д. Развивается лавинообразный процесс, причем каждый следующий фотон летит в том же направлении, что и фотон, его вызвавший. Теперь уже эти фотоны вызывают вынужденный переход встретившихся на их пути молекулах и т.д. Развивается лавинообразный процесс, причем каждый следующий фотон движется в том же направлении, что и фотон, его вызвавший.

Система зеркал (резонатор) позволяет выбрать преимущественное направлениедвижения фотонов — вдоль оси, или точнее, под очень малыми углами к ней. Эти фотоны отражаются от зеркал и опять возвращаются в активную среду, провоцируя другие атомы метастабильного уровня к вынужденному переходу в основное состояние. Следовательно, фотоны в этом направлении размножаются. Фотоны, летящие в других направлениях, покидают активную среду без образование каскадов фотонов.

Таким образом, оптический резонаторобеспечивает многократное происхождение световых волн, распространяющихсявдоль его осипо усиливающей среде, вследствие чего достигается высокая мощность излучения.

Для возникновения генерации лазерного излучения необходимо, чтобы на длине резонатора укладывалось целое число n полуволн, то есть

При достижении определённой мощности (она должна превышать потери при отражении от зеркал) излучение выходит через зеркала (в основном через полупрозрачное зеркало).

Из-за участия в развитии генерации только той части квантов, которые параллельны оси резонатора, к.п.д. лазеров обычно не превышает 1%. В некоторых случаях, жертвуя теми или иными характеристиками, к.п.д. можно довести до 30%.

Устройство He–Ne лазера

He–Ne лазеры относятся к классу газовых непрерывных лазеров. Они имеют невысокую мощность излучения (не более 100 мВт), но отличаются крайней простотой в эксплуатации, относительно дешевы, излучают в видимой области спектра и обладают достаточно высокой стабильностью излучения. Все это вместе взятое сделало He–Ne лазеры очень доступными и популярными. Разберемся подробнее с устройством He–Ne лазера.

Накачка в этом лазере, как и во многих других газовых, осуществляется с помощью электрического разряда и происходит в два этапа:

  1. He служит носителем энергии возбуждения и передает энергию атомам Ne,
  2. Возбужденные атомы Ne, переходя в основное состояние, дают лазерное излучение.

Электроны, образующиеся в результате электрического разряда, при столкновениях возбуждают атомы гелия, которые переходят с основного энергетического уровня 1 в возбужденное состояние на уровень 3 (рис. 4). При столкновениях возбужденных атомов гелия с атомами неона происходит их возбуждение и атомы неона забрасываются (переходят) на один из своих верхних метастабильных энергетических уровней, который расположенвблизи соответствующего уровня гелия. В результате на этом уровне создается инверсная населенность возбужденных атомов неона, а их последующий переход с метастабильного уровня 3 на один из нижних уровней 2 сопровождается испусканием кванта с длиной волны λ = 0.6328 мкм.

На практике описанное реализовано следующим образом. Активный элемент излучателя (рис. 5) представляет собой толстостенную стеклянную трубку, торцы которой закрыты плоскопараллельными окошками из оптического стекла. Стенки трубки делаются толстыми из-за высокой проникающей способности гелия. Торцевые окна ориентированы под углом Брюстера – αБк оси трубки.

Рис. 5. Устройство излучателя He–Ne лазера

Использование такой ориентации окон позволяет получить плоскополяризованное излучение с ориентацией светового вектора в плоскости рисунка, что немаловажно для многих случаев применения лазера. В трубку впаяны электроды, а сама она заполнена смесью He(р = 1 мм рт. ст.) и Ne(р = 2 мм рт. ст).

Активный элемент помещен в резонатор из плоского полупрозрачного зеркала и сферического вогнутого зеркала с коэффициентом отражения

0.98. Радиус кривизны сферического зеркала выбирается равным длине резонатора для увеличения к.п.д. и улучшения качества (монохроматичности, пространственной и временной когерентности) лазерного излучения.

При подаче высокого напряжения между анодом и катодом внутри активного элемента зажигается электрический разряд, которым производится накачка. В зависимости от способа возбуждения разряда активные элементы бывают с горячим и холодным катодом. При использовании схем с горячим катодом разряд зажигается коротким высоковольтным импульсом и поддерживается постоянным высоким (но более низким, чем при поджиге) напряжением. В схемах с холодным катодом применяется высокочастотный электрический разряд. Активные элементы с холодным катодом более долговечны (срок службы более 20000 часов) и обладают лучшими характеристиками излучения. Однако активные элементы с горячим катодом позволяют получить лазеры с большей выходной мощностью излучения.

He–Ne лазер был первым газовым лазером непрерывного действия. Он появился в 1961 году и стал родоначальником огромного семейства газовых лазеров. В разрядной трубке возникает сложное по спектральному составу излучение гелия и неона, которое распространяется по всем направлениям от трубки. Однако усиливается в лазере лишь свет строго определенной длины волны и распространяется он вдоль оси трубки (это направление совпадает с осью зеркального резонатора). Чтобы убедиться в этом, понаблюдайте цвет сечения разряда, видимого под небольшим углом к оси трубки, и сравните его с цветом свечения экрана, на который падает лазерный луч. Для определения длины волны λ излучения He–Ne лазера используется дифракционный монохроматор МУМ (рис.6). Поскольку лазерное излучение в высокой степени когерентно, то луч лазера будет дифрагировать на входной щели монохроматора. В результате после прохождения щелевых диафрагм Д1 и Д2 наблюдается дифракционная картина, подобная показанной на рис.2 лабораторной работы № 72. Поэтому, для повышения точности измерений и регистрации излучения в нулевом порядке дифракции, в работе используется фотоэлектрическая регистрирующая приставка.

Определение длины волны лазерного излучения

Рис. 6. Схема экспериментальной установки

Понравилась статья? Поделиться с друзьями:
Добавить комментарий