Что такое потенциал в электричестве

Электрический заряд, напряжение, напряженность, потенциал

Любой физический объект в окружающем нас мире состоит из огромного количества элементарных частиц, обладающих зарядами. Элементарная частица протон имеет элементарный электрический заряд, которому приписывают (условно) положительный знак, элементарная частица электрон имеет элементарный отрицательный заряд.

Содержание:

Электрический заряд

Под электрическим зарядом понимают физическую величину, которая характеризует способность тел (объектов) вступать в электрическое взаимодействие. Электрический заряд обозначается через q (иногда для обозначения используют заглавную букву Q) и в Международной системе единиц (СИ) измеряется в Кулонах, [Кл].

Электрический заряд – дискретная величина, кратная элементарному электрическому заряду одного электрона (по модулю) e = 1,60217*10 -9 Кл.

где N – целое число.

С физической точки зрения 1 кулон [Кл] соответствует электрическому заряду, проходящему через поперечное сечение проводника при силе тока 1 Ампер за 1 секунду.

Заряды существуют в двух видах: положительные (+) и отрицательные (-). Одноименные заряды отталкиваются, а разноименные – притягиваются.

Сила взаимодействия зарядов направлена вдоль прямой, соединяющей их, пропорциональна величине зарядов и обратно пропорциональна квадрату расстояния между ними (рисунок 1).

Рис. 1. Сила взаимодействия зарядов

где k – коэффициент пропорциональности, зависящий от выбора системы единиц;

– единичный вектор, направленный вдоль прямой, соединяющей заряды q1 и q2.

Силу взаимодействия двух зарядов принято называть кулоновской силой в честь ученого-физика Шарля Кулона, обнаружевшего ее существование.

Если объект (система) не обменивается зарядами с окружающей средой, его называют электрически изолированным. В такой системе сумма электрических зарядов (положительных и отрицательных) не меняется со временем, то есть наблюдается закон сохранения заряда.

Большинство тел в природе электрически нейтральны, так как содержат заряды обоих типов в одинаковом количестве. Положительные и отрицательные заряды попарно нейтрализуют действие друг друга. Для перехода тела в заряженное состояние необходимо пространственно перераспределить в нем заряды, сконцентрировав одноименные заряды в одной области тела. Это возможно сделать, например, при помощи трения или взаимодействия с другим заряженным объектом (рисунок 2).

Рис. 2. Переход незаряженного объекта в заряженное состояние

Электрический заряд порождает в окружающем его пространстве непрерывную материю, называемую электрическим полем. Благодаря электрическому полю заряды имеют возможность взаимодействовать между собой. В электротехнике электрическое поле характеризуется двумя величинами: напряженностью (силовая характеристика) и потенциалом (энергетическая характеристика).

Напряженность электрического поля

Напряженность электрического поляэто векторная физическая количественная характеристика электрического поля. Ее величина показывает силу, которая действует на пробный точечный единичный положительный заряд, помещенный в некоторую точку электрического поля.

Под точечным зарядом понимают упрощенную модель положительного заряда, в которой его формой и размером можно пренебречь.

Вектор напряженности по направлению совпадает с вектором силы , с которой электрическое поле действует на положительный точечный заряд, помещенный в заданную точку поля (рисунок 3).

Рис. 3. Вектор напряженности E , созданной зарядом q, в точке А

Величина напряженности поля в точке А определяется согласно формуле

где r – расстояние от заряда q до точки А, k – коэффициент пропорциональности, зависящий от выбора системы единиц.

Электрическое поле графически изображается линиями напряженности электрического поля, которые условно принято обозначать исходящими из положительно заряженных элементов и входящими в отрицательно заряженные заряды (рисунок 4).

а) изолированные заряды б) взаимодействующие заряды

Рис. 4. Распределение линий напряженности для изолированных (а) и взаимодействующих (б) зарядов

Потенциал, напряжение

Физическую величину, равную отношению потенциальной энергии W электрического заряда в электростатическом поле к величине самого заряда q, называют потенциалом φ электрического поля

Потенциал – это скалярная величина, которая показывает, какую работу способно затратить поле, чтобы переместить единичный пробный положительный заряд в бесконечно удалённую точку. Единицей измерения электрического потенциала является вольт, [В].

При этом важно отметить, что работа сил электростатического поля при перемещении заряда из одной точки электрического поля в другую не зависит от формы траектории перемещения, а зависит только от начального и конечного положения заряда, а также от его величины.

Если имеется некоторая система, состоящая из N точечных зарядов, то потенциал ее электрического поля φ будет равен алгебраической сумме потенциалов полей каждого входящего в него заряда, то есть

Напряжение электрического поля – это разность потенциалов между двумя точками этого поля (рисунок 5).
Напряжение (U) — это работа (А) совершаемая силой поля по перемещению заряженных частиц между двумя точками поля.

U = A/q [Дж/Кл] или [В]

Рис. 5. Графическая интерпретация напряжения электрического поля

Напряжение является относительной величиной, то есть всегда определяется относительно некоторого уровня. Нулевой уровень выбирается произвольно и не влияет на итоговое значение напряжения, так как соответствует разности потенциалов в двух точках (то есть изменению потенциальной энергии). Для простоты расчетов в качестве нулевого уровня в большинстве случаев принимают потенциал заземленного проводника или земли.
Как уже было отмечено ранее электрическое напряжение – это разность потенциалов двух точек, следовательно его значение определяется по формуле

В системе СИ за единицу измерения напряжения принимается вольт, [В]. Физически величина напряжения, равная 1 вольту, соответствует работе 1 джоуль при перемещении заряда в 1 кулон.

Потенциал электрического поля

В зависимости от количества зарядов и их величины изменяется энергия электрического поля, создаваемого этими зарядами. Очевидно, что величина энергии электрического поля, образованного одним ‘зарядом, будет отличаться от величины энергии поля, образованного двумя или тремя такими же зарядами.

В практике очень часто приходится сравнивать различные по величине поля. Это сравнение производится по действиям полей на единичный положительный заряд (так называемый пробный заряд). Поясним это.

Определение: Единичным называется заряд, величина которого равна одной единице заряда.

Пусть, например, поле образовано некоторым положительным зарядом. Чтобы внести в какую-то точку этого поля единичный положительный заряд, необходимо затратить определенную работу на преодоление силы отталкивания между основным и единичным зарядами. Величина потенциальной энергии поля при этом возрастает.

Попробуем теперь внести единичный заряд в другое поле, образованное в два раза большим электрическим зарядом. Очевидно, что при этом придется затратить большую работу, чем в первом случае. Следовательно, и потенциальная энергия поля возрастет больше, чем в первом случае.

В электротехнике для характеристики поля вводится специальное понятие — электрический потенциал.

Определение; Электрический потенциал некоторой точки поля численно равен работе, затрачиваемой при внесении единичного положительного заряда из-за пределов поля в данную точку.

Измеряется потенциал электрического поля в вольтах. Такое название единицы для измерения потенциала дано по имени итальянского физика Алессандро Вольта (1745—1827), открывшего закон взаимодействия электрических токов и предложившего первую гипотезу для объяснения магнитных свойств вещества.

Характеристика поля с помощью электрического потенциала очень удобна. Она позволяет сравнивать не только различные электрические поля, но и отдельные точки одного и того же поля. Вместо того, например, чтобы говорить «шар А наэлектризован более сильно, чем шар Б», можно сказать: «потенциал шара А выше потенциала шара Б». Потенциал точки поля обычно обозначается буквой φ.

Электрическое поле может создаваться не только положительным или отрицательным зарядом, но и их совокупностью. В таком поле отдельные точки могут иметь как отрицательные, так и положительные потенциалы. Чтобы в этом случае сравнивать потенциалы различных точек, ввели условное понятие о точке с нулевым потенциалом, т. е. стали считать, что одна из точек (или несколько точек) имеет потенциал, равный нулю. Потенциалы остальных точек поля определяются относительно точки нулевого потенциала. Этот метод аналогичен методу измерения температур. Там также определенная температура (температура тающего льда) принимается за нулевую точку и по отношению к ней определяется температура других тел.

В электротехнике условно считают, что нулевой потенциал имеет поверхность земли.

Если потенциал в данной точке выше потенциала земли, то мы говорим, что точка обладает положительным потенциалом. Если же, наоборот, потенциал точки ниже потенциала земли, то точка обладает отрицательным потенциалом.

Измеряя потенциалы различных точек электрического поля относительно земли, можно убедиться в том, что они неодинаковы. Значит, между отдельными точками может быть некоторая разность потенциалов.

Определение: Разность потенциалов между двумя точками электрического поля называется напряжением. Напряжение, так же как и потенциал, измеряется в вольтах.

Сказанное поясним примером.

На рис. 1 мы условно показали четыре точки: А—с потенциалом + 20 в, Б — с потенциалом +40 в, В — с нулевым потенциалом (земля) и Г — с потенциалом—15 в.

Рисунок 1. Разность потенциалов между различными точками электрического поля

Разность потенциалов между точками Б и А =40—20=20 в;

Разность потенциалов между точками А и В =20— 0=20 в;

Разность потенциалов между точками Б и В =40— 0=40 в;

Разность потенциалов между точками А и Г=20—(—15) =35 в.

Потенциал точки Б выше потенциалов точек А, В и Г. Потенциал точки А выше потенциалов точек В и Г, но ниже потенциала точки Б. Потенциал точки В ниже потенциалов точек А и Б, но выше потенциала точки Г.

Следует обратить внимание на то, что точки отрицательного потенциала имеют более низкий потенциал, чем тонки нулевого потенциала.

Можно и иначе определить напряжение между двумя точками. Для этого рассмотрим две точки А и Б электрического поля.

Допустим, что потенциал точки А равен φА потенциал точки Б равен φБ. Потенциал точки А (или Б) определяется той работой, которую необходимо затратить на перенос единичного положительного заряда из-за пределов поля в точку А (или Б). Если для переноса единичного положительного заряда из-за предела поля в точку А и в точку Б требуется затратить различную по величине работу, то φА не равно φБ и между точками А и Б существует некоторая разность потенциалов, или напряжение. Это напряжение определяется разностью φА φБ т. е. работой, совершаемой силами поля при переносе единичного положительного заряда из точки А в точку Б.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Работа в электрическом поле. Потенциал

Работа сил электростатического поля. Понятие потенциала

Когда пробный заряд q перемещается в электрическом поле, можно говорить о работе, совершаемой в данный момент электрическими силами. Для малого перемещения ∆ l → формулу работы можно записать так: ∆ A = F · ∆ l · cos α = E q ∆ l cos α = E l q ∆ l .

Рисунок 1 . 4 . 1 . Малое перемещение заряда и работа, совершаемая в данный момент электрическими силами.

Теперь посмотрим, какую работу по перемещению заряда совершают силы в электрическом поле, которое создается распределенным зарядом, не изменяющимся во времени. Такое поле еще называют электростатическим. У него есть важное свойство, о котором мы поговорим в этой статье.

При перемещении заряда из одной точки электростатического поля в другую работа сил электрического поля будет зависеть только от величины этого заряда и положением начальной и конечной точки в пространстве. Форма траектории при этом не имеет значения.

У гравитационного поля есть точно такое же свойство, что неудивительно, поскольку соотношения, с помощью которых мы описываем кулоновские и гравитационные силы, одинаковы.

Исходя из того, что форма траектории не имеет значения, мы можем также сформулировать следующее утверждение:

Когда заряд в электростатическом поле перемещается по любой замкнутой траектории, работа сил поля равна 0 . Поле, обладающее таким свойством, называется консервативным, или потенциальным.

Ниже приведена иллюстрация силовых линий в кулоновском поле, образованных точечным зарядом Q , а также две траектории перемещения пробного заряда q в другую точку. Символом ∆ l → на одной из траекторий обозначается малое перемещение. Запишем формулу работы кулоновских сил на нем:

∆ A = F ∆ l cos α = E q ∆ r = 1 4 π ε 0 Q q r 2 ∆ r .

Следовательно, зависимость существует только между работой и расстоянием между зарядами, а также их изменением Δ r . Проинтегрируем данное выражение на интервале от r = r 1 до r = r 2 и получим следующее:

A = ∫ r 1 r 2 E · q · d r = Q q 4 π ε 0 1 r 1 – 1 r 2 .

Рисунок 1 . 4 . 2 . Траектории перемещения заряда и работа кулоновских сил. Зависимость от расстояния между начальной и конечной точкой траектории.

Результат применения данной формулы не будет зависеть от траектории. Для двух различных траекторий перемещения заряда, указанных на изображении, работы кулоновских сил будут равны. Если же мы изменим направление на противоположное, то и работа также поменяет знак. А если траектории будут соединены, т.е. заряд будет перемещаться по замкнутой траектории, то работа кулоновских сил будет нулевой.

Вспомним, как именно создается электростатическое поле. Оно представляет собой сочетание точечных разрядов. Значит, согласно принципу суперпозиции, работа результирующего поля, совершаемая при перемещении пробного заряда, будет равна сумме работ кулоновских полей тех зарядов, из которых состоит электростатическое поле. Соответственно, величина работы каждого заряда не будет зависеть от того, какой формы траектория. Значит, и полная работа не будет зависеть от пути – важно лишь местоположение начальной и конечной точки.

Поскольку у электростатического поля есть свойство потенциальности, мы можем добавить новое понятие – потенциальная энергия заряда в электрическом поле. Выберем какую-либо точку, поместим в нее разряд и примем его потенциальную энергию за 0 .

Потенциальная энергия заряда, помещенного в любую точку пространства относительно нулевой точки, будет равна той работе, которая совершается электростатическим полем при перемещении заряда из этой точки в нулевую.

Обозначив энергию как W , а работу, совершаемую зарядом, как A 10 , запишем следующую формулу:

Обратите внимание, что энергия обозначается именно буквой W , а не E , поскольку в электростатике E – это напряженность поля.

Потенциальная энергия электрического поля является определенной величиной, которая зависит от выбора точки отсчета (нулевой точки). На первый взгляд в таком определении есть заметная неоднозначность, однако на практике она, как правило, не вызывает недоразумений, поскольку сама по себе потенциальная энергия физического смысла не имеет. Важна лишь разность ее значений в начальной и конечной точке пространства.

Чтобы вычислить работу, которая совершается электростатическим полем при перемещении точечного заряда из точки 1 в точку 2 , нужно найти разность значений потенциальной энергии в них. Путь перемещения и выбор нулевой точки значения при этом не имеют.

A 12 = A 10 + A 02 = A 10 – A 20 = W p 1 – W p 2 .

Если мы поместим заряд q в электростатическое поле, то его потенциальная энергия будет прямо пропорциональна его величине.

Понятие потенциала электрического поля

Потенциал электрического поля – это физическая величина, значение которой можно найти, разделив величину потенциальной энергии электрического заряда в электростатическом поле на величину этого заряда.

Он обозначается буквой φ . Это важная энергетическая характеристика электростатического поля.

Если мы умножим величину заряда на разность потенциалов начальной и конечной точки перемещения, то мы получим работу, совершаемую при этом перемещении.

A 12 = W p 1 – W p 2 = q φ 1 – q φ 2 = q ( φ 1 – φ 2 ) .

Потенциал электрического поля измеряется в вольтах ( В ) .

1 В = 1 Д ж 1 К л .

Разность потенциалов в формулах обычно обозначается Δ φ .

Чаще всего при решении задач на электростатику в качестве нулевой берется некая бесконечно удаленная точка. Учитывая это, мы можем переформулировать определение потенциала так:

Потенциал электростатического поля точечного заряда в некоторой точке пространства будет равен той работе, которая совершается электрическими силами тогда, когда единичный положительный заряд удаляется из этой точки в бесконечность.

Чтобы вычислить потенциал точечного заряда на расстоянии r , на котором размещается бесконечно удаленная точка, нужно использовать следующую формулу:

φ = φ ∞ = 1 q ∫ r ∞ E d r = Q 4 π ε 0 ∫ r ∞ d r r 2 = 1 4 π ε 0 Q r

С помощью нее мы также можем найти потенциал поля однородно заряженной сферы или шара при r ≥ R , что следует из теоремы Гаусса.

Изображение электрических полей с помощью эквипотенциальных поверхностей

Чтобы наглядно изобразить электростатические поля, кроме силовых линий используются поверхности, называемые эквипотенциальными.

Эквипотенциальная поверхность (поверхность равного потенциала) – это такая поверхность, у которой во всех точкам потенциал электрического поля одинаков.

Эквипотенциальные поверхности и силовые линии на изображении всегда находятся перпендикулярно друг другу.

Если мы имеем дело с точечным зарядом в кулоновском поле, то эквипотенциальные поверхности в данном случае являются концентрическими сферами. На изображениях ниже показаны простые электростатические поля.

Рисунок 1 . 4 . 3 . Красным показаны силовые линии, а синим – эквипотенциальные поверхности простого электрического поля. На первом рисунке изображен точечный заряд, на втором –электрический диполь, на третьем – два равных положительных заряда.

Если поле однородное, то его эквипотенциальные поверхности являются параллельными плоскостями.

В случае малого перемещения пробного заряда q вдоль силовой линии из начальной точки 1 в конечную точку 2 мы можем записать такую формулу:

Δ A 12 = q E Δ l = q ( φ 1 – φ 2 ) = – q Δ φ ,

где Δ φ = φ 1 – φ 2 – изменение потенциала. Отсюда выводится, что:

E = – ∆ φ ∆ l , ( ∆ l → 0 ) или E = – d φ d l .

Это соотношение передает связь между потенциалом поля и его напряженностью. Буквой l обозначена координата, которую следует отсчитывать вдоль силовой линии.

Зная принцип суперпозиции напряженности полей, которые создаются электрическими разрядами, мы можем вывести принцип суперпозиции для потенциалов:

Что такое потенциал в электричестве

В физике часто используется понятие потенциалов. Каждый, кто работает с электроникой или домашними электрическими сетями, должен представлять себе, потенциал что такое, как проводится его измерение, и какое влияние он оказывает на окружающие тела.

Понятие потенциала в физике

Что такое потенциал в физике? Это понятие очень часто применяется для описания качеств сил и полей самой разной природы. Скалярная функция, характеризующая некоторую величину, представляющуюся вектором, – вот что это потенциал. Гравитационный потенциал описывает соответствующее поле. В термодинамике это понятие применяется для системной внутренней энергии, в механике – для той или иной приложенной к предмету силы.

Электрика, прежде всего, интересует, что такое потенциал в электричестве. Из общего определения нетрудно вывести, что характеристика электрополя – это электрический потенциал. В своей статической форме электрический потенциал показывает потенциальную энергию одиночного «плюсового» заряда, помещаемого в данное место электрополя, и является одной из разновидностей электромагнитного потенциала. Вторая его форма – векторная (в отличие от скалярной), описывает магнитное поле.

Важно! Характеристика поля, описывающая зависимость работы при передвижении исключительно от исходной точки и места назначения, – это потенциальность поля. Траектория перемещения в этом случае на работу не влияет.

Разность потенциалов (напряжение)

Напряжение является одним из важнейших терминов в электрике, оно описывается как работа, совершаемая электрополем с целью перемещения некоторого заряда из одной точки в другую. По аналогии с гравитацией, заряд при помещении в зону действия поля обладает потенциалом, который можно сравнить с соответствующим видом энергии у тела. Величина электрического потенциала прямо пропорциональна степени полевой напряженности и величине самого заряда.

Встает вопрос: потенциал в чем измеряется? Правильнее будет сказать, в чем обычно измеряется разность потенциалов, так как работники электротехники имеют дело именно с этой величиной в форме напряжения. Для самого потенциала специальной измерительной единицы не существует. В СИ принято измерять разность в вольтах (В). Она равна одному вольту в том случае, если для транспортировки заряда в один кулон из одной точки электрополя в другую потребуется совершить работу в один джоуль.

Важно! Измерить напряжение можно с помощью специального устройства – вольтметра. Стрелочная разновидность прибора, использующаяся на школьных уроках физики, оснащена градуированной шкалой, базирующейся на угле отклонения проволочной рамки, по которой проходит электроток. Помимо него, существуют и приборы с цифровым дисплеем, а также мультиметры, способные работать в нескольких режимах и измеряющие разные величины, описывающие электроцепь. Для измерения важно правильно подключить щупы.

Примеры формул для вычисления напряжения

Измерить напряжение можно, воспользовавшись такой формулой:

U=A/q (U, A и q – величина напряжения, переносящая работа электрополя и заряд, соответственно).

Выразив работу (A=q*U), можно понять, что, чем больше напряженность, тем большую работу потребуется совершить электрополю, чтобы перенести Q. Такие преобразования помогают усвоить, почему важно, чтобы источник питания был мощным. Чем больше потенциальная разница между его клеммами, тем больший объем работы он способен обеспечивать.

Чтобы определить напряжение на участке электрической цепи, используется следующее выражение:

Здесь I – сила протекающего по проводнику электротока, R – сопротивление фрагмента цепи. Для последовательно и параллельно соединенных проводниковых элементов также существуют свои законы, согласно которым рассчитываются напряжение, токовая сила и сопротивление для каждой из веток.

Для чего нужен потенциометр электрику

Данный прибор широко применяется в практике для модуляции напряжения. Дело в том, что у многих источников (особенно заточенных под автономное функционирование: аккумуляторные элементы, солнечные батареи и т.д.) константное напряжение, не поддающееся управлению без специальных устройств, что может вызвать проблемы. Чтобы уменьшить исходное напряжение такого элемента, используют устройства-делители, снабженные потенциометрами.

Как работает потенциометр? Он представляет собой резистор, имеющий пару выводов и подвижный ползунок с еще одним выводом. Подключаться такое переменное устройство сопротивления может двумя способами:

  1. По типу реостата, с использованием ползункового вывода и одного из пары других. Сопротивление замеряется движением ползунка по корпусу резистора. Регуляция цепного электротока в таком случае возможна при последовательном подключении такого реостата и источника напряжения.
  2. Потенциометрическим методом, задействующим каждый вывод из имеющейся у прибора тройки. Два главных вывода включаются параллельно источнику, снятие сниженного напряжения реализуется с ползункового механизма и одного вывода. В этом случае через резисторное устройство течет электроток, создающий спад напряжения между ползунком и боковыми выводами. В такой модели на источник питания ложится большая нагрузка, так как для точности регуляции и отсутствия сбоев необходимо, чтобы резисторное сопротивление в несколько раз уступало нагрузочному.

Таким образом, понятие потенциала используется в разных областях физики: как в механике, так и в изучении электричества. В последнем случае оно выступает в качестве характеристики поля. Непосредственно рассматриваемая величина измерению не поддается, зато можно измерить разность, тогда один заряд берется за точку отсчета.

Видео

III. Основы электродинамики

Тестирование онлайн

Работа электростатического поля

Рассмотрим ситуацию: заряд q0 попадает в электростатическое поле. Это электростатическое поле тоже создается каким-то заряженным телом или системой тел, но нас это не интересует. На заряд q0 со стороны поля действует сила, которая может совершать работу и перемещать этот заряд в поле.


Работа электростатического поля не зависит от траектории. Работа поля при перемещении заряда по замкнутой траектории равна нулю. По этой причине силы электростатического поля называются консервативными, а само поле называется потенциальным.

Потенциал

Система “заряд – электростатическое поле” или “заряд – заряд” обладает потенциальной энергией, подобно тому, как система “гравитационное поле – тело” обладает потенциальной энергией.

Физическая скалярная величина, характеризующая энергетическое состояние поля называется потенциалом данной точки поля. В поле помещается заряд q, он обладает потенциальной энергией W. Потенциал – это характеристика электростатического поля.

Вспомним потенциальную энергию в механике. Потенциальная энергия равна нулю, когда тело находится на земле. А когда тело поднимают на некоторую высоту, то говорят, что тело обладает потенциальной энергией.

Касательно потенциальной энергии в электричестве, то здесь нет нулевого уровня потенциальной энергии. Его выбирают произвольно. Поэтому потенциал является относительной физической величиной.

В механике тела стремятся занять положение с наименьшей потенциальной энергией. В электричестве же под действием сил поля положительно заряженное тело стремится переместится из точки с более высоким потенциалом в точку с более низким потенциалом, а отрицательно заряженное тело – наоборот.

Потенциальная энергия поля – это работа, которую выполняет электростатическая сила при перемещении заряда из данной точки поля в точку с нулевым потенциалом.

Рассмотрим частный случай, когда электростатическое поле создается электрическим зарядом Q. Для исследования потенциала такого поля нет необходимости в него вносить заряд q. Можно высчитать потенциал любой точки такого поля, находящейся на расстоянии r от заряда Q.

Диэлектрическая проницаемость среды имеет известное значение (табличное), характеризует среду, в которой существует поле. Для воздуха она равна единице.

Разность потенциалов

Работа поля по перемещению заряда из одной точки в другую, называется разностью потенциалов

Эту формулу можно представить в ином виде

Эквипотенциальная поверхность (линия) – поверхность равного потенциала. Работа по перемещению заряда вдоль эквипотенциальной поверхности равна нулю.

Напряжение

Разность потенциалов называют еще электрическим напряжением при условии, что сторонние силы не действуют или их действием можно пренебречь.

Напряжение между двумя точками в однородном электрическом поле, расположенными по одной линии напряженности, равно произведению модуля вектора напряженности поля на расстояние между этими точками.

От величины напряжения зависит ток в цепи и энергия заряженной частицы.

Принцип суперпозиции

Потенциал поля, созданного несколькими зарядами, равен алгебраической (с учетом знака потенциала) сумме потенциалов полей каждого поля в отдельности

Как определить знак потенциала

При решении задач возникает много путаницы при определении знака потенциала, разности потенциалов, работы.

На рисунке изображены линии напряженности. В какой точке поля потенциал больше?

Верный ответ – точка 1. Вспомним, что линии напряженности начинаются на положительном заряде, а значит положительный заряд находится слева, следовательно максимальным потенциалом обладает крайняя левая точка.

Если происходит исследование поля, которое создается отрицательным зарядом, то потенциал поля вблизи заряда имеет отрицательное значение, в этом легко убедиться, если в формулу подставить заряд со знаком “минус”. Чем дальше от отрицательного заряда, тем потенциал поля больше.

Если происходит перемещение положительного заряда вдоль линий напряженности, то разность потенциалов и работа являются положительными. Если вдоль линий напряженности происходит перемещение отрицательного заряда, то разность потенциалов имеет знак “+”, работа имеет знак “-“.

Порассуждайте самостоятельно отрицательные или положительные значения будут принимать работа и разность потенциалов, если заряд перемещать в обратном направлении относительно линий напряженности.

Зависимость напряженности и потенциала от расстояния

Потенциал поля, созданного равномерно заряженной сферой радиусом R и зарядом q на расстоянии r от центра сферы, равен

Напряжение в природе

Напряжение в клетках сетчатки глаза при попадания в них света около 0,01 В.
Напряжение в телефонных сетях может достигать 60 В.
Электрический угорь способен создавать напряжение до 650 В.

Энергия взаимодействия зарядов*

Из определения потенциала следует, что потенциальная энергия электростатического взаимодействия двух зарядов q1 и q2, находящихся на расстоянии r друг от друга, численно равна работе, которая совершается при перемещении точечного заряда q2 из бесконечности в данную точку поля, созданного зарядом q1

Аналогично Тогда энергия взаимодействия двух точечных зарядов

Электрический потенциал

Электрический потенциал – это скалярная физическая величина, характеризующая напряжённость поля. Через параметр также выражается электрическое напряжение.

Физический смысл электрического поля

Учёные давно ломают голову над субстанциями электрического и магнитного полей, но пока сие для них загадка, как и гравитация. существование не оспаривается, но суть неясна. Не секрет электричество люди знали задолго до нашей эры, а к изучению не стремились.

Главные достижения по изучению электричества случились бы минимум на 20 лет раньше, нежели в действительности. До Эрстеда влияние провода с током на магнитную стрелку отмечал Джованни Доменико Романьози в 1802 году. Это подтверждённые официальными изданиями данные, а собственно событие, возможно, произошло раньше. Заслуга Эрстеда лишь в заострении внимания общественности на замеченном факте.

Подобных примеров тьма. Порой учёные вне зависимости друг от друга делали открытия, изобретения. Встречались случаи, когда муж науки думал, что его измышления не новы. Потом удивлялся, когда оказывалось, что авторство теперь принадлежит постороннему человеку, хотя собственное открытие случилось раньше по времени. Замалчивание гарантировало переход доли известности к описавшему событие. Так происходило в XIX веке – учёные постоянно сотрудничали, что-то обсуждали, порой тяжело найти концы. К примеру, Фарадея упрекали за плагиат конструкции первого человеческого двигателя, а Википедия приписала ему авторство катушки индуктивности, придуманной Лапласом, на которое Майкл не претендовал. Впрочем, когда речь заходит о материи полей, учёные хранят дружное молчание. Единственным исключением стал Никола Тесла, утверждавший, что все во Вселенной состоит из гармонических колебаний.

Итак, учёные не знают о поле ничего, а электрический потенциал это характеристика поля. Субстанцию никто не видел, долго не могли зарегистрировать и с трудом представляют поныне! Не верите – попробуйте нарисовать в воображении электромагнитную волну:

  1. Известно, что колебание представляет суперпозицию электрического и магнитного полей, изменяющихся во времени.
  2. Вектор напряжённости магнитный перпендикулярен вектору электрическому, связаны через константу среды (некая физическая величина).
  3. На вид это две перпендикулярные волны… стоп! Что такое волна?

Так выглядит современная физика. Никто точно не знает, как выглядят поле, колебание, волна, как это нарисовать. Понятно лишь: картинки из учебника слабо описывают происходящее. Дело усугубляется неспособностью человека видеть и чувствовать электромагнитное излучение. Колебание не выглядит синусоидальным, рассматривается для одной точки, линии, фронта и пр. Это, скорее, уплотнение и растяжение эфира, нечто напоминающее трёхмерную неописуемую фигуру.

Длинное предисловие свидетельствует, насколько неизведанным остаётся то, что используется в повседневной жизни. И порой таит реальную опасность для человека. К примеру, доказано, что излучение СВЧ печи постепенно «портит» пищу. Человек, регулярно питающийся из микроволновки, рискует получить в собственное распоряжение обширный список недугов. В первую очередь – болезни крови. Небезопасна для людей и сетевая частота 50 Гц.

Характеристики электрического поля

Человек быстро понял, что электрическое поле есть, уже в XVIII веке – либо раньше – нарисована опилками его картина. Люди увидели линии, выходившие из полюсов. По аналогии стали пытаться изобразить электрическое поле. К примеру, Шарль Кулон на исходе восемнадцатого столетия открыл закон притяжения и отталкивания зарядов. Записав формулу, понял, что эквипотенциальные линии силы взаимодействия концентрически расходятся вокруг точечного скопления электричества, а траектории движения – прямолинейны.

Так оказалась изображена первая картина электрического поля. Напоминает картину, как исследователи представляли магнитное, но с гигантской разницей: в природе нашлись заряды обоих знаков. Линии напряжённости уходят в бесконечность (в теории, безусловно, закончатся). А магнитные заряды поодиночке не найдены, линии их всегда замыкаются в видимой области пространства.

Первая картина электрического поля

В остальном нашлось много общего, к примеру, заряды одинакового знака отталкиваются, а разных – притягиваются. Это справедливо для магнитов и электричества. Гильберт заметил, что магнетизм – сильная субстанция, которую сложно экранировать или уничтожить, а электричество легко разрушается влагой и прочими веществами. Дёгтя в бочку добавил Кулон, который, следуя Бенджамину Франклину, присвоил электронам отрицательный заряд. Хотя речь шла о количестве флюида. И избыток электронов следовало назвать положительным.

Как результат, линии напряжённости поля располагаются в направлении обратном правильному. Потенциал растёт не туда… Главными характеристиками электрического поля считаются:

  1. Напряжённость – показывает, какая сила действует на положительный единичный заряд в данной точке со стороны поля.
  2. Потенциал – показывает, какую работу способно затратить поле, чтобы переместить единичный пробный положительный заряд в бесконечно удалённую точку.
  3. Напряжение – разность потенциалов между двумя точками. Напряжение определяется исключительно относительно некоторого уровня.

Наиболее вероятно происхождение терминов из латинского языка. Напряжённость ввёл в обиход, предположительно, Алессандро Вольта, а потенциал называется по наименованию типа поля, которое указанной величиной характеризуется: работа по перемещению заряда не зависит от траектории, равна разнице потенциалов начальной и конечной точки. Следовательно, на замкнутой траектории равна нулю.

Нулевой потенциал и потенциальное поле

Электрическое поле считается потенциальным, значит, работа по перемещению в нем заряда не зависит от траектории и определяется единственно потенциалом. Потенциал – универсальное физическое понятие, часто применяемое. К примеру, для гравитационного поля Земли, происхождение которого поныне необъяснимо. Известно, что массы притягиваются по закону, напоминающему выведенный Шарлем Кулоном.

Зарисовка напряжённости поля

В электрическом поле Земной шар становится началом отсчёта. Нет разницы, относительно чего исчислять потенциал, но люди быстро поняли, что смоляное электричество бьётся, стеклянное кусается током, а грунт не причиняет вреда. Следовательно, в полном соответствии с логикой принят за нуль. В этом плюс: Земля громадная по объёму, на планету стекают без труда гигантские токи, статические и переменные. Доказано, что на теле заряд пытается распределиться взаимно на максимальной дистанции. Что соответствует поверхности планеты. При таком раскладе плотность заряда получается несущественной, много меньше, чем на любом наэлектризованном теле.

На Земле потенциал за редким исключением измеряется относительно грунта, значение называют электрическим напряжением. Из контекста становится понятно, что напряжение бывает положительным и отрицательным. Впрочем, не всегда. На ЛЭП порой считается выгодным использовать схемы с изолированной нейтралью. Тогда потенциал любой точки не считается относительно Земли, отсутствует нейтраль. Это становится возможным в трёхфазных цепях.

На местной подстанции ставят разделительный трансформатор, нейтраль вторичной обмотки которого заземляют, чтобы поставлять потребителям фазное напряжение 220 В, а не линейное. Порой люди наивно думают, что планета единая, следовательно, не нужна нейтраль, ток всё равно потечёт. Но потечёт через грунт, вызывая немалый экономический ущерб и представляя опасность для людей созданием шагового напряжения. Медный нулевой проводник – называли в первой половине XIX века возвратным – имеет малое сопротивление и гарантированно не причинит вреда.

В цепях с изолированной нейтралью потенциал не отсчитывается относительно уровня грунта, а напряжение измеряется между двумя точками. Уместно упомянуть, что по закону Ома ток, протекая через проводник, создаёт разность потенциалов. Поэтому нельзя браться при аварии за контур заземления. Малое сопротивление способно оказаться причиной образования здесь немалой разницы потенциалов. А человек обязан помнить об опасности напряжения прикосновения.

Однако цепи с изолированной нейтралью используются и в целях безопасности. Если напряжение создаётся между двумя точками вторичной обмотки разделительного трансформатора, ток на землю через неосторожно взявшегося за оголённый провод человека не пойдёт – разница потенциалов относительно грунта меньше. Следовательно, разделительный трансформатор становится мерой защиты и часто используется на практике.

Падение потенциала во внешней электрической цепи

Внешней электрической цепью называется участок, находящийся за пределами источника. На практике ЭДС вырабатывается на вторичных обмотках трёхфазного трансформатора подстанции, считаясь источником. Начиная с вывода, идёт внешняя цепь.

На ней потенциал падает от фазного напряжения до нейтрали. Речь идёт о рядовых потребителях. Когда в дом приходит электричество, это неизменно система трёхфазного тока. Нейтраль глухо заземлена, чтобы обеспечить нужный уровень безопасности. Жилой дом не гарантирует равномерную загрузку всех фаз, через нейтраль потечёт ток. Если цепь использовать для защиты, не возникает полной гарантии безопасности: путь тока способен пролечь через человека, неожиданно взявшегося за заземлитель.

Следовательно, нужно обеспечить два нулевых проводника: рабочий и защитный. Через первый производится зануление металлических частей объекта, через второй – заземление. Причём за рубежом принято делить две ветви на две разные линии, а в РФ они объединяются в районе контура заземления. Первое сделано для надёжной защиты, второе – для возможности работы в здании трёхфазного оборудования (вдруг пригодится!). Если в промышленной установке оставить лишь заземление корпуса, это плохо окончится для неудачника, попавшего под электрический потенциал.

Следовательно, западная система хороша для однофазного оборудования. Но за счёт унифицированности система РФ сложнее. Импортное оборудование плохо сочетается с российскими условиями: фильтры питания рассчитаны так, чтобы защитный и рабочий нулевые проводники не пересекались. Причина в электрическом потенциале:

  1. На защитном проводнике всегда потенциал грунта – нуль.
  2. На рабочем допустимо иное значение за счёт падения напряжения на проводах линии электроснабжения.

Чтобы выровнять разницу, линии на входе в здание объединяют и заводят на контур громоотвода. Что для импортной техники не становится идеальным решением, предприятия-поставщики электроэнергии несут потери. Это известная система TN-C-S, применяющаяся в РФ. Дома, возведенные ещё в СССР, понемногу переоборудуются.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий