Для чего применяется электродвигатель

Устройство и принцип работы электродвигателя

Электродвигатель – устройство для преобразования электроэнергии во вращательное движение вращающейся части электрической машины. Преобразование энергии в двигателях происходит за счет взаимодействия магнитных полей обмоток статора и ротора. Эти электрические машины широко используются во всех отраслях промышленности, в качестве привода электротранспорта и инструментов, в системах автоматизации, бытовой техники и так далее.

Существует множество видов электродвигателей, различающихся по принципу действия, конструкции, исполнению и другим признакам. Рассмотрим основные типы этих электрических машин.

По принципу действия различают магнитоэлектрические и гистерезисные электрические машины. Несмотря на простоту конструкции, высокий пусковой момент, последние не получили широкого распространения. Эти электродвигатели имеют высокую цену, низкий коэффициент мощности, ограничивающие их применение. Подавляющее большинство выпускаемых электродвигателей – магнитоэлектрические.

По типу напряжения питания различают:

  • Электродвигатели постоянного тока.
  • Двигатели переменного тока.
  • Универсальные электрические машины.

По конструкции различают электродвигатели с горизонтально и вертикально расположенным валом. Кроме того, электрические машины классифицируют по назначению, климатическому исполнению, степени защиты от попадания влаги и посторонних предметов, мощности и другим параметрам.

Классы электродвигателей:

  • Постоянного тока
    • Бесщеточные ЕС (электронно-коммутируемые)
    • Со щетками
      • С последовательным возбуждением
      • С параллельным возбуждением
      • Со смешанным возбуждением
      • С постоянными магнитами
  • Переменного тока
    • Универсальные
    • Синхронные
    • Индукционные
      • Однофазные
      • Трехфазные

Таблица классификации электронных двигателей:

Электродвигатели постоянного тока

Двигатели постоянного тока широко применяются в качестве привода электротранспорта, промышленного оборудования, а также микропривода исполнительных механизмов. Такие электрические машины обладают следующими преимуществами:

  • Возможность регулировки частоты вращения путем изменения напряжения в обмотке возбуждения. При этом крутящий момент на валу ДПТ (двигатели постоянного тока) остается неизменным.
  • Высокий к.п.д. (коэффициент полезного действия) у машин постоянного тока несколько выше, чем у самых распространенных асинхронных двигателей переменного тока. При неполной нагрузке на валу к.п.д. ДПТ выше на 10-15%.
  • Возможность изготовления ДПТ небольших габаритов. Практически все используемые микроприводы рассчитаны на постоянный ток.
  • Простота схем управления. Для пуска, реверса и регулирования скорости и момента не требуется сложного электронного оборудования и большого количества аппаратов для коммутации.
  • Возможность работы в режиме генератора. Электродвигатели такого типа можно использовать в качестве источников постоянного тока.
  • Высокий пусковой момент. ДПТ используют в составе электроприводов кранов, тяговых и грузоподъемных механизмов, где требуется запуск под значительной нагрузкой.

ДПТ различают по способу возбуждения, они бывают:

  • С постоянными магнитами. Такие двигатели отличаются малыми габаритами. Основная область их применения – микроприводы.
  • С электромагнитным возбуждением.

Электрические машины с электромагнитами такого типа получили самое широкое распространение. Их классифицируют по способу подключения обмотки статора:

  • Двигатели с параллельным возбуждением. Обмотки якоря и статора в электрической машине такого типа соединены параллельно. Такие электрические машины не требуют дополнительного источника питания для обмотки возбуждения, скорость вращения ротора практически не зависит от нагрузки. Их используют для привода металлорежущих станков и другого оборудования.
  • Электродвигатели с последовательно включенной обмоткой статора. ДПТ этого типа имеют значительный пусковой момент. Их применяют в качестве привода электротранспорта и промышленных установок с необходимостью пуска под нагрузкой.
  • Двигатели с независимым возбуждением. Для питания обмотки статора таких электромашин используется независимый источник постоянного тока. ДПТ такого типа отличаются широким диапазоном регулирования скоростей.
  • Электрические машины со смешанным возбуждением. Электромагнит возбуждения в таких двигателях поделен на 2 части. Одна из них включена параллельно, вторая последовательно обмотке якоря. Электрические машины такого типа используются в механизмах и оборудовании, где необходим высокий пусковой момент, а также переменная и постоянная скорость при переменном моменте.

Электродвигатели переменного тока

Электрические машины такого типа широко используют для приводов всех типов технологического оборудования, электроинструментов, автоматических регуляторов. По наличию разности между скоростью вращения магнитного поля статора и частотой вращения ротора различают синхронные и асинхронные двигатели.

Асинхронные электродвигатели

Благодаря дешевизне и простоте конструкции электрические машины такого типа получили самое широкое распространение. Их принципиальное отличие – наличие так называемого скольжения. Это разность между частотой вращения магнитного поля неподвижной части электрической машины и скоростью вращение ротора. Напряжение на вращающейся части индуцируется за счет переменного магнитного поля обмоток статора двигателя. Вращение вызывает взаимодействие поля электромагнитов неподвижной части и магнитного поля ротора, возникающего под влиянием наведенных в нем вихревых токов. По особенностям обмоток статора выделяют:

  • Однофазные двигатели переменного тока. Двигатели такого типа требуют для пуска наличия внешнего фазосдвигающего элемента. Это может быть пусковой конденсатор или индуктивное устройство. Область применения однофазных двигателей – маломощные приводы.
  • Двухфазные электрические машины. Такие двигатели имеют 2 обмотки со смещенными относительно друг друга фазами. Их также используют для бытовых устройств и оборудования, имеющего небольшую мощность.
  • Трех- и многофазные электродвигатели. Наиболее распространенный тип асинхронных машин. Электрические двигатели такого типа имеют от 3-х и более обмоток статора, сдвинутых по фазе на определенный угол.

По конструкции ротора асинхронные электрические машины делят на двигатели с короткозамкнутым и фазным ротором.

Обмотка ротора электрических машин первого типа представляет собой несколько неизолированных стержней, выполненных из сплавов меди или алюминия, замкнутых с двух сторон кольцами (конструкция “беличья клетка”). Асинхронные двигатели такого типа обладают следующими преимуществами:

  • Достаточно простая схема пуска. Такие электрические машины можно подключать непосредственно к электрической сети через аппараты коммутации.
  • Допустимость кратковременных перегрузок.
  • Возможность изготавливать электрические машины высокой мощности. Двигатель такого типа не содержит скользящих контактов, препятствующих наращиванию мощности.
  • Относительно простое ТО и ремонт. Асинхронные электромашины имеют несложную конструкцию.
  • Невысокая цена. Двигатели асинхронного типа стоят дешевле синхронных машин и ДПТ.

Электрические машины с короткозамкнутым ротором имеют свои недостатки:

  • Предельная скорость вращения составляет не более 3000 об/мин при входе в синхронный режим.
  • Технически сложная реализация регулирования частоты вращения.
  • Высокие пусковые токи при прямом запуске.

Электродвигатели с фазным ротором частично лишены недостатков, присущих машинам с ротором конструкции “беличья клетка”. Вращающаяся часть электрической машины такого типа имеет обмотки, соединенные в схему “звезда”. Напряжение подводится к обмотке через 3 контактных кольца, закрепленных на роторе и изолированных от него.

Такие электродвигатели обладают следующими достоинствами:

  • Возможность ограничивать пусковые токи при помощи резистора, включенного в цепь электромагнитов ротора.
  • Больший, чем у электромашин с короткозамкнутым ротором, пусковой момент.
  • Возможность регулировки скорости.

Недостатками таких двигателей являются относительно большие габариты и масса, высокая цена, более сложный ремонт и сервисное обслуживание.

Синхронные двигатели переменного тока

Как и в асинхронных электродвигателях, вращение ротора в синхронных машинах достигается взаимодействием полей ротора и статора. Скорость вращения ротора таких электрических машин равна частоте магнитного поля, создаваемого обмотками статора.

Обмотка неподвижной части двигателя рассчитана на питание от трехфазного напряжения. К электромагнитам ротора подключается постоянное напряжение. Различают явнополюсные и неявнополюсные обмотки. В синхронных двигателях малой мощности используют постоянные магниты.

Запуск и разгон синхронной машины осуществляется в асинхронном режиме. Для этого на роторе двигателя имеется обмотка конструкции “беличья клетка”. Постоянное напряжение подается на электромагниты только после разгона до номинальной частоты асинхронного режима. Синхронные двигатели имеют следующие особенности:

  • Постоянная скорость вращения при переменной нагрузке.
  • Высокий к.п.д. и коэффициент мощности.
  • Небольшая реактивная составляющая.
  • Допустимость перегрузки.

К недостаткам синхронных электродвигателей относятся:

  • Высокая цена, относительно сложная конструкция.
  • Сложный пуск.
  • Необходимость в источнике постоянного напряжения.
  • Сложность регулировки скорости вращения и момента на валу.

Все недостатки электрических машин переменного тока можно исправить установкой устройства плавного пуска или частотного преобразователя. Обоснование выбора того или иного устройства обусловлено экономической целесообразностью и требуемыми характеристиками электропривода.

Универсальные двигатели

В отдельную группу выделяют универсальные электродвигатели, которые могут работать от сети переменного тока и от источников постоянного напряжения. Они используются в электроинструментах, бытовой технике, а также других маломощных устройствах. Конструкция такой электрической машины принципиально не отличатся от двигателя постоянного тока. Главное отличие – конструкция магнитной системы и обмоток ротора. Магнитная система состоит из изолированных друг от друга секций для снижения магнитных потерь. Обмотка ротора такой машины поделена на 2 части. При питании от переменного тока напряжение подается только на ее половину. Это делается в целях снижения радиопомех, улучшения условий коммутации.

К преимуществам таких машин относятся:

  • Высокая скорость вращения. Универсальные электродвигатели развивают скорость до 10 000 об/мин и более.
  • Питание от переменного и постоянного напряжения. Двигатели такого типа широко применяют для электроинструментов, имеющих дополнительные аккумуляторные батареи.
  • Возможность регулирования скорости без использования дополнительных устройств.

Однако, такие электромашины имеют свои недостатки:

  • Ограниченная мощность.
  • Необходимость обслуживания коллекторного узла.
  • Тяжелые условия коммутации при питании от переменного напряжения из-за наличия трансформаторной связи между обмотками.
  • Электромагнитные помехи при подключении к сети переменного тока.

Каждый тип двигателя имеет свои достоинства и недостатки. Выбор электрической машины для привода любого оборудования делается исходя из условий эксплуатации, требуемой частоты вращения, экономической целесообразности, типа нагрузки и других параметров.

Электродвигатели – их назначение и области применения

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Электродвигатель является специальной машиной, которая электрическую энергию преобразует в механическую. Учитывая род тока электроустановки, в которой работает электрическая машина, используются основные типы электродвигателей — постоянного и переменного тока.

Электромоторы переменного тока подразделяются на синхронные и асинхронные. Асинхронные, в свою очередь, делятся на общепромышленные, взрывозащищенные и крановые.

Электромашины переменного тока бывают однофазными и трехфазными. На современном этапе довольно широкое применение находят трехфазные синхронные и асинхронные электромоторы.

Сегодня асинхронные электромоторы являются наиболее востребованными электрическими двигателями. Такую широкую популярность асинхронные устройства получили из-за своей простоты конструкции и довольно высокой эксплуатационной надежности. Асинхронный электродвигатель довольно часто применяют в бытовой технике и на промышленных предприятиях.

В тех случаях, когда в приводах не нужны большие пусковые моменты, применяют электродвигатель с короткозамкнутым ротором. А когда не требуется плавной регулировки скорости и мощность электродвигателя большая, используется асинхронный электродвигатель с фазным ротором. Электромоторы асинхронные с фазным ротором используются в тех случаях, когда нужно снизить пусковой ток и увеличить пусковой момент.

Асинхронные однофазные агрегаты применяются в сети переменного тока 220 вольт. Такие электромоторы нашли широкое применение в бытовых стиральных машинах, бетономешалках, строительном электроинструменте, кухонных многофункциональных комбайнах, в деревообрабатывающих и сверлильных станках и другом бытовом оборудовании.

Асинхронные электрические двигатели также применяются для приводов различных крановых установок промышленного назначения, всевозможных грузовых лебедок и прочих устройств, которые применяются в производстве. Электромоторы переменного тока имеют огромное значение для многих отраслей промышленности. Асинхронные агрегаты могут быть с преобразовательным устройством в виде коллектора (коллекторные электродвигатели) или не иметь его (бесколлекторные электромоторы).

Коллекторные и бесколлекторные электродвигатели переменного тока применяются в различных промышленных и бытовых электроустройствах (холодильниках, пылесосах, мясорубках, электрическом инструменте, вентиляторах, соковыжималках) и в медицинской технике. Они рассчитаны на работу как от сети постоянного тока, так и от сети переменного тока. Для коллекторных электродвигателей характерен большой пусковой момент и относительно малые размеры.

Бесколлекторные электромоторы имеют малый уровень электромагнитных излучений и низкий уровень шума. Для них характерен высокий ресурс эксплуатации. В большинстве случаев бесколлекторные электродвигатели эксплуатируются в местах со взрывоопасной средой, например в нефтегазовой промышленности.

Довольно широкое распространение среди электромоторов переменного тока получили асинхронные электромоторы с трехфазной симметричной обмоткой на сердечнике статора, которые запитываются от сети переменного тока

Примечательно, что асинхронные электродвигатели, как правило, используются как двигатели, а синхронные электромоторы чаще всего используются как генераторы.

Синхронные электродвигатели являются двухобмоточными электрическими машинами, в которых одна из обмоток подсоединена к электрической сети с определенной постоянной частотой вращения, при этом вторая регулярно возбуждается постоянным током с частотой вращения ротора, которая не зависит от нагрузки. Такие машины применяются в качестве электродвигателей в крупных установках, таких как приводы поршневых компрессоров и воздухопроводов и, как правило, используются в качестве генераторов.

Скорость вращения синхронных моторов находится в постоянном соотношении к определенной частоте электрической сети.

Рольганговые электромоторы применяются для приводов, которые эксплуатируются в условиях высоких температур различного металлургического производства. Взрывозащищенные электромоторы предназначены для привода разных механизмов в газовой, химической, нефтеперерабатывающей промышленности, где могут появляться различные взрывоопасные соединения газов и паров с воздухом. Различные крановые электромоторы в основном предназначены для всевозможных крановых механизмов всех типов. Они могут быть применены для привода других механизмов, которые работают в кратковременных режимах эксплуатации.

Общепромышленные электромоторы широко используются в деревообрабатывающей промышленности, станкостроении, всевозможных системах промышленной вентиляции, различных транспортерах, подъемниках, всевозможном насосном оборудовании.

Электродвигатели: виды, сферы применения и прочие особенности

Существует несколько видов электрических двигателей:

1. Электродвигатель постоянного тока. Устройство представляет собой электромашину, предназначенную для получения механической энергии за счет преобразования энергии постоянного тока.

Электрические двигатели из-за высоких эксплуатационных показателей и долговечности устанавливаются на следующие виды оборудования:

  • подъемно-транспортные агрегаты;
  • красильно-отделочное оборудование;
  • полимерное оборудование;
  • буровые станки;
  • различные вспомогательные агрегаты для экскаваторов.

Например, к оборудованию постоянного тока можно отнести электродвигатель серии 2п, который используется при работе широко регулируемого электропривода.

Для работы машины серии 2п необходимы следующие условия:

  • работа может происходить на высоте не более 1 километра над уровнем моря;
  • эксплуатация допускается при температуре воздуха от +5 до +40 градусов Цельсия;
  • влажность воздуха при +25 градусов не должна превышать 80%;
  • работа допускается в безопасных условиях: отсутствие взрывоопасных веществ, агрессивных газов, а также паров в концентрации, способной разрушить металл.

2. Синхронный электродвигатель относится к электрическим машинам переменного тока. Во время работы ротор и магнитное поле в воздушном зазоре вращаются в одинаковой частоте. Как правило, данные электродвигатели применяются в приводах, работа которых осуществляется с одинаковой скоростью. Например, в компрессорах, насосах, больших вентиляторах, а также генераторах постоянного тока.

3. Асинхронный электрический двигатель. Во время работы ротор вращается с разной частотой по отношению к магнитному полю, который создается обмоткой статора.

Существует несколько типов асинхронных машин:

  • Асинхронные машины с короткозамкнутым ротором. Устанавливаются в электрические приводы, для работы которых нет необходимости создания больших пусковых моментов.
  • Асинхронные машины с фазным ротором. Используются данные двигатели в приводах механизмов, при работе с которыми необходимо плавное регулирование скоростного режима. Двигатели с фазным ротором применяются и в механизмах, работающих при больших нагрузках.

Все они оснащены одинаковым статором, однако отличием машин является конструкция обмотки ротора.

К асинхронным электрическим двигателям можно отнести:

  • Крановые электродвигатели.

Область применения электродвигателей – электрические приводы металлургического оборудования, а также различные подъемно-транспортные механизмы, работающие в кратковременных режимах. Стоит отметить, что крановые электродвигатели также используются в механизмах, работающих в длительном режиме.

Для работы крановых двигателей требуется напряжение сети 380 Вольт. Обмотка статора должна быть трехконечная. При этом в определенном изготовлении механизма (шесть концов, имеющих соединение фаз в виде треугольника или звезды) работа возможна при напряжении 220/380, а также 380/600 Вольт.

Устанавливаются в стационарный либо передвижной транспорт, работающий в опасной среде, где воздух смешан с парами взрывоопасных газов либо смесей. Допуск к работе взрывозащищенных электродвигателей определяется ГОСТ Р 513 30-5.

Сфера применения взрывозащищенных электродвигателей серии АИМ, а также АИММ – нефтехимическая, горнодобывающая промышленность, производство ЛКМ. Для работы взрывозащищенных электродвигателей необходима сеть с трехфазным переменным током частотой 50-60 Герц.

Например, электрические двигатели АИР. Данные машины применяются в приводах механизмов, работающих на открытом воздухе, под навесом, куда не попадают прямые солнечные лучи, а также в закрытом помещении, где работа осуществляется от электросети с частотой переменного тока 50 Герц.

Что такое электродвигатель

Что из себя представляет электродвигатель

Говоря техническим языком, электродвигатель является элементом, который преобразует электричество в механическую энергию, что приводит в движение весь механизм. Поэтому двигатель и называют главным составляющим. Давайте же разберемся подробнее, для чего нужен электродвигатель, из чего он состоит и как работает.Первые модели были произведены еще в 19 ст. Но перед этим была четко сформулирована цель – получить механическую энергию для передвижения и других действий с помощью электричества.

Разберемся, из чего состоит электродвигатель. Главными элементами считаются статор – неподвижная часть (корпус) и ротор – подвижная часть механизма. Помимо этого, в состав двигателя входят еще десятки мелких деталей, таких как подшипники, обмотка из медной проволоки и так далее. На этой странице можно посмотреть все электрические характеристики электродвигателей.

Теперь давайте рассмотрим виды электрических двигателей. В основном они классифицируются по типу питания – это двигатели постоянного тока и переменного, и по принципу работы – синхронные и асинхронные. Двигатели постоянного тока так называются, так как работают от различных блоков питания, аккумуляторов и прочих батарей. Переменного, потому что соединяются напрямую с электрической сетью.

Синхронные механизмы имеют обмотки на роторе и подают на них напряжение для работы двигателя. Асинхронные – не имеют данных компонентов. Поэтому скорость вращения будет заметно медленнее, так отсутствует магнитное поле, созданного в статоре.

Как работает и что делает электродвигатель

Когда механизм соединяется с источником питания, на обмотке возникает магнитное поле, которое и вращает ротор в статоре. Это происходит по закону Ампера. Ведь создается отталкивающая сила, способная вращать вал и приводить в движение другие детали. Частота оборотов ротора напрямую зависит от частоты приходящего на витки электричества, а также от количества пар магнитных полюсов. Кстати, название данной разновидности пошло от того факта, что скорость вращения ротора различалась с частотой оборотов магнитного поля, то есть эти показатели были асинхронными.

Синхронные же двигатели немного отличаются строением ротора. В таком типе электродвигателей, ротор играет роль магнита, который и создает поле для вращения. Здесь магнитное поле статора и сам ротор вращаются с одинаковой частотой. Но есть один, очень значимый минус. Чтобы запустить синхронный электродвигатель, нужно воспользоваться помощью асинхронного. Ведь после простого подключения механизма к сети, ничего не произойдет.

К этому недостатку можно прибавить низкую скорость оборотов. К примеру, если взять асинхронный и синхронный двигатели и подключить их к источнику электричества одинакового напряжения, то первый тип будет вращаться заметно быстрее второго.

Где используют электродвигатели

Они имеют множество неоспоримых преимуществ и особенностей, что делают механизм уникальным и незаменимым. В современном мире данный тип двигателя широко используется практически во всех сферах жизнедеятельности человека. Приобрести электродвигатели можно в каталоге электродвигателей аир.

Применение электрических двигателей начинается от небольших игрушек, и заканчивается большими предприятиями и народными хозяйствами. С помощью этого механизма стало возможно поднимать и передвигать огромные предметы.

Если коротко резюмировать данную статью, то хочется еще раз подчеркнуть значимость таких двигателей в жизни человека. Без них, многие сферы просто не смогли бы нормально функционировать и развиваться. Поэтому нужно тщательно подходить к выбору электродвигателя, ведь его поломка чревата остановкой производства или другого важного процесса, что повлечет за собой материальные и нематериальные убытки. Быстро подобрать необходимый мотор помогут наши специалисты.

Виды электрических двигателей и принципы их работы

Представьте себе, каким бы стал современный мир, если бы из него вдруг исчезли все электродвигатели. Допустим, заменили бы их на тепловые машины. Но ведь тепловые двигатели громоздки, выделяют пар и выхлопные газы, в то время как электрические двигатели сопоставимой мощности компактны, отлично умещаются на станках, электротранспорте, другом оборудовании, будучи при этом экологически безопасными, экономичными и надежными. Невозможно представить современный мир без электродвигателей, сильно облегчающих работу людям, короче говоря, делающих нашу жизнь более комфортной.

Благодаря электродвигателям мы получаем механическую энергию из электрической. А решающее значение в этом процессе имеют массогабаритные характеристики, мощность и количество оборотов в минуту, которые в свою очередь связаны как с конструктивными особенностями двигателей, так и с параметрами питающего напряжения.

По виду питающего напряжения электродвигатели бывают: переменного или постоянного тока. По способу управления: шаговыми, линейными, серво (следящими). Двигатели переменного тока, в свою очередь, бывают асинхронными и синхронными. Давайте же рассмотрим виды электрических двигателей, отметим их особенности, и поговорим о принципах работы каждого из них.

После электричества совершенно бросил интересоваться природой. Неусовершенствованная вещь.

Владимир Владимирович Маяковский

Содержание статьи

Двигатели постоянного тока

Для построения электроприводов с высокими динамическими характеристиками используют электродвигатели постоянного тока. Они отличаются высокой перегрузочной способностью и равномерностью вращения. Именно двигатели постоянного тока применяются зачастую в электротранспорте. Ими же комплектуются многие станки, машины, агрегаты, включая бытовую технику.

Работа электрических двигателей постоянного тока основана на принципе взаимодействия токов, протекающих по проводникам якоря, с неподвижным магнитным потоком, создаваемым обмоткой возбуждения полюсов.

В основе работы классического двигателя постоянного тока — вращение рамки с током во внешнем магнитном поле: к рамке подводится ток через щеточно-коллектроный узел, а магнитное поле статора получают или от постоянных магнитов, или от того же постоянного тока (магнитное поле катушки с током). В результате рамка с током поворачивается в магнитном поле. Вместо рамки может выступать катушка с током на магнитопроводе – ротор (якорь двигателя постоянного тока).

При помощи резисторов, включаемых в цепь якоря двигателя с независимым возбуждением, можно получать требуемый пусковой ток и пусковой момент, регулировать (уменьшать) скорость якоря при наличии нагрузки на валу. Снижая напряжение на якоре при помощи регулятора, также можно получать требуемый пусковой момент, регулировать скорость вниз от основной, то есть уменьшать ее.

Благодаря перечисленным свойствам такие двигатели постоянного тока с независимым возбуждением находят применение там, где есть необходимость в плавном регулировании скорости в широком диапазоне, например в металлорежущих станках.

Двигатели переменного тока

Электродвигатели переменного тока очень широко используются в быту и в промышленности, поскольку считаются более универсальными, по сравнению с двигателями постоянного тока. Двигатели переменного тока имеют простую конструкцию, более надежны, чем двигатели постоянного тока, и неприхотливы в обращении.

Например большинство домашних вентиляторов и промышленных вытяжек оборудованы именно асинхронными двигателями переменного тока. Ими же оснащены лебедки, насосы, станковое оборудование. Простота двигателей переменного тока промышленной частоты заключается в отсутствии щеточно-коллекторного узла и сложной электроники.

Шаговые двигатели

Шаговые электродвигатели функционируют, преобразуя дискретные электрические импульсы постоянного тока в механические перемещения (шаги). Офисная техника, станки, роботы, – везде, где требуется высокая скорость и равномерность перемещения рабочего органа, применяются сегодня шаговые электродвигатели. Для контроля скорости вращения ротора, электронным блоком регулируется частота следования импульсов и их скважность. Шаговый двигатель — это синхронный бесщеточный двигатель постоянного тока.

Примеры ипсользования шаговых двигателей:

Сервоприводы (серводвигатели)

Сервопривод (следящий привод) — это высокотехнологичный двигатель постоянного тока. В отличие от шагового двигателя, у серводвигателя в конструкции присутствует еще и датчик положения ротора, при помощи которого реализуется механизм отрицательной обратной связи.

Двигатели данного типа способны развивать высокие обороты и мощность, как и шаговые двигатели постоянного тока, но регулировка положения рабочего органа оказывается более точной. Для станков с ЧПУ, сервопривод — как раз то, что нужно. Многие современные промышленные станки оборудованы именно сервоприводами, интегрированными в систему высокоточного компьютерного управления.

Линейные электродвигатели

У линейного двигателя постоянного тока вместо ротора — стержень (шток) с магнитами, прямолинейно перемещаемый через статор относительно катушки индуктивности. Двигатели данного типа набирают популярность в качестве приводов механизмов с возвратно-поступательными движениями в процессе работы.

Это надежное и экономичное решение, исключающее необходимость использовать какую бы то ни было механическую передачи. Импульсы необходимой полярности и длительности посылаются в катушку, формируя магнитное поле нужной конфигурации, которое со своей стороны действует на шток, причем текущее положение штока отслеживается благодаря датчикам Холла, встроенным в статор.

Асинхронные электродвигатели

Чаще всего асинхронным двигателем называют двигатель переменного тока, у которого частота (или угловая скорость) вращения ротора отличается от угловой скорости магнитного потока статора. То есть в таком двигателе присутствует «скольжение». Асинхронные двигатели переменного тока бывают с короткозамкнутым (типа «беличья клетка») ротором или с фазным ротором.

Более мощные асинхронные двигатели изготавливают с фазным ротором, величина магнитного потока у такого ротора регулируется реостатом, и скорость вращения получается регулируемой. Менее критичное (к зависимости частоты вращения ротора от нагрузки) оборудование оснащают асинхронными двигателями с короткозамкнутым ротором.

Трехфазные асинхронные электродвигатели переменного тока благодаря простоте в обслуживании, надежности и низкой стоимости наиболее распространены в промышленности.

Однофазные асинхронные электродвигатели имеют короткозамкнутый ротор и две обмотки в статоре, смещенные одна относительно другой на 90°. Одна обмотка рабочая. При работе электродвигателя эта обмотка постоянно получает питание от сети однофазного переменного тока.

Вторая обмотка пусковая и подключается на период пуска для создания пускового момента. Она выполнена проводом меньшей площади сечения, и ее активное сопротивление больше, чем у рабочей обмотки.

Когда ротор двигателя развивает достаточную частоту вращения, пусковая обмотка отключается. Это происходит автоматически под действием токового реле или специального пускателя.

Лучшие пусковые свойства имеет электродвигатель, в цепь пусковой обмотки которого включен конденсатор. В этом случае ток в пусковой обмотке сдвигается по фазе на угол, близкий к 90°, чем обеспечивается достаточный пусковой момент.

В рабочей части механические характеристики однофазного асинхронного электродвигателя идентичны характеристикам трехфазного асинхронного электродвигателя. КПД однофазных электродвигателей меньше, чем трехфазных, поэтому однофазные двигатели изготовляют с номинальной мощностью не более 0,6 кВт.

На такую же мощность изготовливают коллекторные двигатели однофазного тока, которые могут работать как от сети переменного тока, так и от источника постоянного напряжения, поэтому их называют универсальными коллекторные двигатели.

По существу, это двигатели с последовательным возбуждением, отличающиеся тем, что магнитопровод их делается шихтованным и они приспособлены к работе с пульсирующим магнитным потоком. В случае питания от источника переменного напряжения В 50 Гц ток и магнитный поток одновременно меняют направление, и поэтому момент получается пульсирующим с частотой 100 Гц.

Эти электродвигатели обладают характеристиками двигателей с последовательным возбуждением. Их применяют как и асинхронные однофазные электродвигатели в электроинструментах, бытовых механизмах и других машинах небольшой мощности.

Подборка статей про асинхронные двигатели:

Синхронные электродвигатели

Говоря «синхронный двигатель», традиционно имеют ввиду двигатель переменного тока, у которого частота вращения (или угловая скорость) ротора равна угловой скорости движения магнитного потока в полости статора. Чаще всего речь о двигателях, роторы которых несут на себе постоянные магниты или обмотку возбуждения, создающую сильное собственное магнитное поле, препятствующее скольжению.

Синхронные трехфазные электродвигатели отличаются от асинхронных тем, что ротор их представляет собой электромагнит, через обмотки которого пропускается постоянный ток. Такой электродвигатель обладает свойством поддерживать строго постоянную частоту вращения, равную частоте вращения магнитного поля, создаваемого трехфазной обмоткой статора.

Кроме того, синхронный электродвигатель имеет высокий коэффициент мощности. Регулируя ток возбуждения, можно поддерживать коэффициент мощности равным единице. В синхронном электродвигателе отсутствуют потери, связанные со скольжением, поэтому КПД их также больше, чем в асинхронных.

У синхронных двигателей скорость вращения ротора поэтому постоянна. Мощные вентиляторы, приводы подъемных кранов, насосов, – во многих применениях, где необходимы высокая мощность и постоянная скорость, независимо от нагрузки, используются синхронные двигатели.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий