Как найти емкость конденсатора

Как определить емкость конденсатора?

Основной характеристикой конденсатора является его емкость. Очень часто замеры емкости требуется проводить в электролитическом конденсаторе. В отличие от керамических и оксидных конденсаторов, которые редко выходят из строя (разве что в результате пробоя диэлектрика), электролитическим деталям свойственна потеря ёмкости из-за высыхания электролита. Поскольку работа электронных схем сильно зависит от емкостных характеристик, то необходимо знать, как определить емкость конденсатора.

Существуют разные способы определения ёмкости:

  • по кодовой или цветной маркировке деталей;
  • с помощью измерительных приборов;
  • с использованием формулы.

Измерить емкость проще всего с помощью измерителя C и ESR. Для этого контакты измерительных щупов подсоединяют к выводам конденсатора, соблюдая полярность электролитических деталей. При этом результаты измерений выводятся на дисплей. (Рисунок 1). Радиолюбители, которым часто приходится делать измерения, приобретают такой прибор или изготавливают его самостоятельно.

Рис. 1. Измерение ёмкости с помощью измерителя C и ESR

С использованием мультиметра и формул

Если в вашем распоряжении есть мультиметр с функцией измерения параметра «Cx», то измерить ёмкость конденсатора довольно просто: следует переключить прибор в режим «Сх», после чего выбрать оптимальный диапазон измерения, соответствующий параметрам конденсатора. Ножки конденсатора вставляем в соответствующее гнездо (соблюдая полярность подключения) и считываем его параметры.

Режим «Сх» в мультиметре

Менее точно можно определить ёмкость с помощью тестера, у которого нет режима «Сх». Для этого потребуется источник питания, к которому подключают конденсатор по простой схеме (рис. 2).

Рис. 2. Схема подключения конденсатора

Алгоритм измерения следующий:

  1. Измерьте напряжение источника питания щупами контактов измерительного прибора.
  2. Образуйте RC-цепочку с конденсатором и выводами резистора номиналом 1 – 10 кОм.
  3. Закоротите выводы конденсатора и подключите RC-цепочку к источнику питания.
  4. Замерьте напряжение образованной цепи с помощью мультиметра.
  5. Если напряжение изменилось, необходимо подогнать его до значения, близкого к тому, которое вы получили на выходе источника питания.
  6. Вычислите 95% от полученного значения. Запишите показатели измерений.
  7. Возьмите секундомер и включите его одновременно с убиранием закоротки.
  8. Как только мультиметр покажет значение напряжения, которое вы вычислили (95%), остановите секундомер.
  9. По формуле С = t/3R, где t – время падения напряжения, вычисляем ёмкость конденсатора в фарадах, если единицы измерения сопротивление резистора выразили в омах, а время в секундах.

Рис. 3. Измерение с помощью тестера. Проверка

Подчеркнём ещё раз, что точность измерения ёмкости данным способом не слишком высока, но определить работоспособность радиоэлемента на основании такого измерения вполне возможно. Некоторые узлы электронных приборов исправно работают, если есть небольшие отклонения от номинальных емкостей, главное, чтобы не было электрического пробоя.

Таким же методом можно вычислить параметры керамического радиоэлемента. Для этого необходимо подключить RC-цепочку через трансформатор и подать переменное напряжение. Значение ёмкости в данном случае определяем по формуле: C = 0.5*π*f*Xc , где f частота тока, а Xc ёмкостное сопротивление.

Осциллографом

С приемлемой точностью можно определить ёмкость конденсатора с помощью цифрового или обычного электронного осциллографа. Принцип похож на метод измерения ёмкости тестером. Разница только в том, что не потребуется секундомер, так как с высокой точностью время зарядки конденсатора отображается на экране осциллографа. Если применить генератор частоты и последовательную RC-цепочку (рис. 4), то ёмкость можно рассчитать по простой формуле: C = UR / UC* ( 1 / 2*π*f*R ).

Рис. 4. Простая схема

Алгоритм вычисления простой:

  1. Подключите осциллограф к электрической схеме. При подключении щупов прибора к электролитам соблюдайте полярность электрического тока.
  2. Измерьте амплитуды напряжений на конденсаторе и на резисторе.
  3. Путём подстройки частоты генератора добивайтесь, чтобы значения амплитуд на обоих элементах сравнялись (хотя бы приблизительно).
  4. Подставьте полученные значения в формулу и вычислите ёмкость конденсатора.

При измерении ёмкостей неполярных конденсаторов часто вместо RC-цепочки собирают мостовую схему с частотным генератором (показано на рис. 5), а также другие сборки. Сопротивления резисторов подбирают в зависимости от параметров номинальных напряжений измеряемых деталей. Ёмкость вычисляют из соотношения: r4 / Cx = r2 / C0.

Рисунок 5. Мостовая схема

Гальванометром

При наличии баллистического гальванометра также можно определить ёмкость конденсатора. Для этого используют формулу:

C = α * Cq / U , где α – угол отклонения гальванометра, Cq – баллистическая постоянная прибора, U – показания гальванометра.

Из-за падения сопротивления утечки ёмкость конденсаторов уменьшается. Энергия теряется вместе с током утечки.

Описанные выше методики определения ёмкости позволяют определить исправность конденсаторов. Значительное отклонение от номиналов говорит, что конденсаторы неисправны. Пробитый электролитический радиоэлемент легко определяется путём измерения сопротивления. Если сопротивление стремится к 0 – изделие закорочено, а если к бесконечности – значит, есть обрыв.

Следует опасаться сильного электрического разряда при подключениях щупов к большим электролитам. Они могут накапливать мощный электрический заряд от постоянного тока, который молниеносно высвобождается током разряда.

По маркировке

Напомним, что единицей емкости в системе СИ является фарада ( обозначается F или Ф). Это очень большая величина, поэтому на практике используются дольные величины:

  • миллифарады (mF, мФ ) = 10 -3 Ф;
  • микрофарады (µF, uF, mF, мкФ) = 10 -3 мФ = 10 -6 Ф;
  • нанофарады (nF, нФ) = 10 -3 мкФ =10 -9 Ф;
  • пикофарады (pF, mmF, uuF) = 1 пФ = 10 -3 нФ = 10 -12 Ф.

Мы перечислили название единиц и их сокращённое обозначение потому, что они часто встречаются в маркировке крупных конденсаторов (см. рис. 6).

Рис. 6. Маркировка крупных конденсаторов

Обратите внимание на маркировку плоского конденсатора (второй сверху): после трёхзначной цифры стоит буква М. Данная буква не обозначает единицы измерения «мегафарад» – таких просто не существует. Буквами обозначены допуски, то есть, процент отклонения от ёмкости, обозначенной на корпусе. В нашем случае отклонение составляет 20% в любую сторону. Надпись 102М на большом корпусе можно было бы написать: 102 нФ ± 20%.

Теперь расшифруем надпись на корпусе третьего изделия. 118 – 130 MFD обозначает, что перед нами конденсатор, ёмкость которого находится в пределах 118 – 130 микрофарад. В данном примере буква М уже обозначает «микро». FD – обозначает «фарады», сокращение английского слова «farad».

На этом простом примере видно, какая большая путаница в маркировке. Особенно запутана кодовая маркировка, применяемая для крохотных конденсаторов. Дело в том, что можно встретить конденсаторы, маркировка которых выполнена старым способом и детали с современной кодировкой, в соответствии со стандартом EIA. Одни и те же символы можно по-разному интерпретировать.

По стандарту EIA:

  1. Две цифры и одна буква. Цифры обозначают ёмкость, обычно в пикофарадах, а буква – допуски.
  2. Если буква стоит на первом или втором месте, то она обозначает либо десятичную запятую (символ R), либо указывает на название единицы измерения («p» – пикофарад, «n» – нанофарад, «u» – микрофарад). Например: 2R4 = 2.4 пФ; N52 = 0,52 нФ; 6u1 = 6,1 мкф.
  3. Маркировка тремя цифрами. В данном коде обращайте внимание на третью цифру. Если её значение от 0 до 6, то умножайте первые две на 10 в соответствующей степени. При этом 10 0 =1; 10 1 = 10; 10 2 = 100 и т. д. до 10 6 .

Цифры от 7 до 9 указывают на показатель степени со знаком «минус»: 7 условно = 10 -3 ; 8 = 10 -2 ; 9 = 10 -1 .

  • 256 обозначает: 25× 10 5 = 2500 000 пФ = 2,5 мкФ;
  • 507 обозначает: 50 × 10 -3 = 50 000 пФ = 0, 05 мкФ.

Возможна и такая надпись: «1B253». При расшифровке необходимо разбить код на две части – «1B» (значение напряжения) и 253 = 25 × 10 3 = 25 000 пФ = 0,025 мкФ.

В кодовой маркировке используются прописные буквы латинского алфавита, указывающие допуски. Один пример мы рассмотрели, анализируя маркировку на рис. 6.

Приводим полный список символов:

  • B = ± 0,1 пФ;
  • C = ± 0,25 пФ;
  • D = ± 0,5 пФ или ± 0,5% (если емкость превышает 10 пФ).
  • F = ± 1 пФ или ± 1% (если емкость превышает 10 пФ).
  • G = ± 2 пФ или ± 2% (для конденсаторов от 10 пФ»).
  • J = ± 5%.
  • K = ± 10%.
  • M = ± 20%.
  • Z = от –20% до + 80%.

Изделия с кодовой маркировкой изображены на рис. 7.

Рис. 7. Пример кодовой маркировки

Если в кодировке отсутствует символ из приведённого выше списка, а стоит другая буква, то она может единицу измерения емкости.

Важным параметром является его рабочее напряжение конденсатора. Но так как в данной статье мы ставим задачу по определению ёмкости, то пропустим описание маркировки напряжений.

Отличить электролитический конденсатор от неполярного можно по наличию символа «+» или «–» на его корпусе.

Цветовая маркировка

Описывать значение каждого цвета не имеет смысла, так как это понятно из следующей таблицы (рис. 8):

Рис. 8. Цветовая маркировка

Запомнить символику кодовой и цветовой маркировки довольно трудно. Если вам не приходится постоянно заниматься подбором конденсаторов, то проще пользоваться справочниками или обратиться к информации, изложенной в данной статье.

Видео в помощь

Емкость конденсатора: формула

Емкостный показатель является одной из основных характеристик не только батареек и аккумуляторных элементов, но и конденсаторных устройств. Любому человеку, работающему с электросхемами, необходимо знать, от чего зависит эта величина, может ли она уменьшиться или увеличиться под влиянием внешних факторов (как, например, период времени, зарядка элемента или частота напряжения), и как выглядит выражающая емкость конденсатора формула для разных типов элементов.

Расчёт конденсаторов

В общем случае емкостной показатель С определяется по формуле:

где q – заряд конденсатора на одной из его пластин, U – значение напряжения на конденсаторе.

Из этого выражения можно вывести формулу заряда конденсатора, величину которого можно найти, измерив два других показателя с помощью мультиметра.

Часто возникает вопрос, может ли этот параметр измениться. Он является постоянной величиной, присущей данному элементу и зависящей от его габаритов и устройства. Узнать емкостное значение можно с помощью мультиметра. Пользуясь этими данными, можно рассчитать целевую индуктивность дросселя для колебательного контура или параметры резистора.

В чем измеряется емкость? За измерительную единицу принимается параметр конденсаторного устройства, который можно зарядить 1 Кл до состояния, когда разница потенциалов будет равной 1 вольту. Название этой единицы – фарад (Ф).

Важно! Если сравнить два устройства, идентичных по габаритам, но различающихся тем, что у одного в зазоре между пластинами находится диэлектрический материал, а у другого – воздушное пространство, то при помещении одинаковых зарядов потенциальная разница первой детали будет в Е раз больше. Е – это число, равное диэлектрической проницаемости материала, из которого состоит использованный слой.

Ниже приведены формулы для конденсаторных элементов разной конфигурации. Рассчитанные по ним значения соответствуют идеальным устройствам, но релевантны и для реальных в тех случаях, когда емкостными потерями можно пренебречь.

Формула электрической емкости плоского конденсатора

В основном электрополе пластин плоского конденсатора бывает однородным, за исключением боковых частей, влиянием которых обычно принято пренебрегать. Однако, если пространство между обкладками велико в сопоставлении с их габаритами, краевые искажения нужно учитывать. В общем случае, чтобы высчитать, сколько фарад составит емкость плоского конденсатора, пользуются выражением:

C=E*E0*S/d, где S – площадь меньшей обкладки, E0 – электрическая константа, d – длина пространства между пластинами.

Формула электрической емкости цилиндрического изделия

Такой компонент состоит из пары разных по размеру коаксиальных цилиндрических элементов проводника, в пространстве между которыми расположили диэлектрический материал. В этом случае для нахождения емкостной величины не нужно узнавать значение заряда на обкладках конденсатора. Можно воспользоваться следующей формулой емкости:

С=2 π *E*E0*l / ln(R2/R1).

Здесь R1 и R2 – радиусы, соответственно, внутреннего и наружного цилиндров, l – их высота (она одинакова, в то время как радиальные параметры отличаются).

Формула для сферического изделия

Сферическая деталь состоит из двух проводниковых сфер с диэлектрическим слоем между ними. Вот как найти емкость круглого конденсатора:

C=4 π *E*E0* R1* R2 / R2 — R1.

Буквами R обозначены, как и в предыдущем примере, радиусы компонентов.

Ёмкость одиночного проводника

Это характеристика способности твердого проводникового компонента к удержанию электрозаряда. Она определяется особенностями средового окружения (в частности, диэлектрической проницаемостью), взаиморасположением тел, имеющих на себе заряд, размерами детали. От силы тока и величины заряда она не зависит.

Способы соединения элементов

Монтаж изделия на плату может быть вертикальным или горизонтальным. При использовании нескольких изделий они могут быть соединены между собой разными способами.

Параллельное соединение

Для его организации нужно подключить группу деталей к электроцепи так, чтобы обкладки всех деталей были подсоединены напрямую к местам включения. Поскольку все компоненты получают заряд от одного источника тока, у них будет одинаковая разность потенциалов. Но так как заряд копится на каждом изделии отдельно, количество электричества на группе можно выразить как сумму количеств на ее деталях. Это справедливо и для емкостных данных – значение для конфигурации равно сумме значений каждой единицы. Поэтому такую группу можно считать равной одному конденсатору, емкостной параметр которого равен сумме таковых для всех частей.

Последовательное соединение

Эта схема подразумевает соединение устройств одно за другим, когда к местам подключения к цепи подсоединены только два крайних изделия. Количество электричества для каждой детали будет одинаковым. При этом, чем менее емкое устройство, тем большее значение напряжения на нем будет наблюдаться.

Важно! Емкостной показатель такой системы будет еще меньше, чем у устройства, обладающего наименьшим его значением. Соотношение выглядит так: 1/С = 1/С1 + 1/С2 + 1/С3 + … Опираясь на него, можно произвести вывод непосредственно формулы С. Для двух элементов: С = С1*С2 / С1+С2.

Смешанное соединение

Такая сложная конструкция содержит фрагменты с двумя вышеприведенными типами соединений. Чтобы подсчитать полную емкость, схему делят на простые блоки, состоящие только из деталей, соединенных каким-то одним образом. Находят эквивалентные значения для каждого блока и затем рисуют схему заново в упрощенном виде. Рассчитывают данные для получившейся системы.

Чтобы суметь подобрать подходящий конденсаторный набор, нужно уметь узнавать емкостные данные. Важно также знать, как рассчитывается показатель для конфигурации из нескольких деталей, соединенных между собой тем или иным образом.

Видео

Расчет емкости конденсатора

Емкость C есть способность конденсатора принять (накопить и удержать) количество электричества Q в ампер-секундах или заряд Q в кулонах. Если сообщить какому-либо телу, например шару, электрический заряд (количество электричества) Q, то электроскоп, включенный между этим телом и землей, покажет напряжение U (рис. 1). Это напряжение пропорционально заряду и зависит также от формы и размеров тела.

Зависимость между зарядом Q и напряжением U выражается формулой Q=C∙U.

Постоянная пропорциональности C называется емкостью тела. В случае, если тело имеет форму шара, емкость тела пропорциональна радиусу шара r.

Единицей измерения емкости является фарада (Ф).

Емкостью 1 Ф обладает тело, когда при заряде 1 к между ним и землей получается напряжение 1 В. Фарада – очень большая единица измерения, а потому на практике используют более мелкие единицы: микрофарады (мкФ), нанофарады (нФ) и пикофарады (пФ).

Эти единицы связаны следующими соотношениями: 1 Ф =10^6 мкФ; 1 мкФ =10^6 пФ; 1 нФ =10^3 пФ.

Емкость шара радиусом 1 см равна 1,1 пФ.

Накапливать заряд может не только изолированное тело, но и специальное устройство, называемое конденсатором. Конденсатор состоит из двух или более пластин (обкладок), которые разделены диэлектриком (изоляцией).

На рис. 2 показана схема с источником постоянного тока, включенным на конденсатор. При включении на правой пластине конденсатора образуется положительный заряд +Q, а на левой пластине отрицательный заряд –Q. Во время заряда конденсатора по цепи протекает ток, который после окончания заряда прекращается; тогда напряжение на конденсаторе будет равно э. д. с. источника U. Заряд на обкладке конденсатора, напряжение и емкость связаны соотношением Q=C∙U. В диэлектрике конденсатора при этом образуется электростатическое поле.

Емкость конденсатора с диэлектриком из воздуха можно подсчитать по формуле C=S/(4∙π∙d)∙1,11, пФ, где S – площадь одной обкладки, см2; d – расстояние между обкладками, см; C – емкость конденсатора, пФ.

Емкость конденсатора, состоящего из n пластин (рис. 3), равна: C=(n-1)∙ S/(4∙π∙d)∙1,11, пФ.

Если пространство между пластинами заполнить другим диэлектриком – например бумагой, емкость конденсатора увеличится в ε раз. При применении бумажной изоляции емкость увеличится в 3 раза, при слюдяной изоляции – в 5–8 раз, при стеклянной – в 7 раз и т. д. Величина ε называется диэлектрической проницаемостью диэлектрика.

Общая формула для определения емкости конденсатора с диэлектрической проницаемостью ε (эпсилон) имеет вид: C=ε∙S/(4∙π∙d)∙1,11, пФ.

Эта формула удобна для расчетов небольших переменных конденсаторов для радиоприемников. Эта же формула может быть представлена в виде: C=(ε_0∙ε∙S)/d, где ε_0 – диэлектрическая постоянная, или диэлектрическая проницаемость, вакуума (ε_0=8,859∙10^(-12) Ф/м); ε – диэлектрическая проницаемость диэлектрика.

В этой формуле размеры подставляются в метрах, а емкость получается в фарадах.

1. Какую емкость имеет планета Земля, радиус которой r=6378 км?

Так как емкость шара радиусом 1 см равна 1,11 пФ, то емкость Земли равна: C=637,8∙10^6∙1,11=707,95∙10^6 пФ =708 мкФ. (Емкость шара, равного по величине нашей планете, сравнительно невелика. Такую емкость имеют небольшие по размерам электролитические конденсаторы).

2. Определить емкость конденсатора, состоящего из двух пластин, каждая из которых имеет площадь S=120 см 2 .

Пластины разделены слоем воздуха толщиной d=0,5 см, C=S/(4∙π∙d)∙1,11= (120∙1,11)/(4∙π∙0,5)=21,20 пФ.

3. Определить емкость конденсатора с данными, указанными в предыдущем примере, если пространство между пластинами будет заполнено парафинированной бумагой с диэлектрической проницаемостью ε=4, стеклом (ε=7), электротехническим картоном (ε=2), слюдой (ε=8).

Конденсатор с парафинированной бумагой имеет емкость C=ε∙(S∙1,11)/(4∙π∙d)=4∙21,2=84,8 пФ.

Емкость конденсатора со стеклом C=7∙21,2=148,4 пФ.

Емкость конденсатора с картоном C=2∙21,2=42,3 пФ.

Емкость конденсатора со слюдой C=8∙21,2=169,6 пФ.

4. Какова емкость воздушного поворотного конденсатора для радиоприемника, состоящего из 20 пластин площадью 20 см2, если расстояние между пластинами 0,06 см (рис. 149)?

Конденсатор, изображенный на рис. 3, состоит из отдельных простейших конденсаторов с двумя обкладками, число которых равно n-1.

5. Бумажный конденсатор емкостью C=2 мкФ состоит из двух полос станиоля C и двух полос диэлектрика из парафинированной бумаги Б с диэлектрической проницаемостью ε=6. Толщина парафинированной бумаги d=0,1 мм. Сложенные полосы сворачиваются в рулон, от станиолевых обкладок делаются выводы. Определить длину станиолевой полосы конденсатора, если ее ширина 4 см (рис. 4).

Сначала определим площадь S одной полосы по формуле C=ε∙S/(4∙π∙d)∙1,11, откуда S=(C∙4∙π∙d)/(ε∙1,11)=(2∙4∙π∙0,01∙10^6)/(6∙1,11); S=2000000/(6∙1,11)∙4∙π∙0,01=37680 см2.

Длина каждой полосы l=37680/4=9420 см =94,2 м.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Электрическая емкость. Конденсаторы

Проводники и диэлектрики в электростатическом поле. Диэлектрическая проницаемость вещества. Электроемкость. Конденсаторы. Поле плоского конденсатора. Электроемкость плоского конденсатора. Последовательное и параллельное соединение конденсаторов. Энергия заряженного конденсатора.

Проводники и диэлектрики в электростатическом поле

Вещества в природе можно разделить на проводники и диэлектрики.

Основная особенность — наличие свободных зарядов (электронов), которые участвуют в тепловом движении и могут перемещаться по всему объему проводника.

Типичные проводники — металлы.

Диэлектрическая проницаемость вещества

В отсутствие внешнего поля в любом элементе объема проводника отрицательный свободный заряд компенсируется положительным зарядом ионной решетки. В проводнике, внесенном в электрическое поле, происходит перераспределение свободных зарядов, в результате чего на поверхности проводника возникают нескомпенсированные положительные и отрицательные заряды. Этот процесс называют электростатической индукцией, а появившиеся на поверхности проводника заряды — индукционными зарядами.

В отличие от проводников, в диэлектриках (изоляторах) нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.

Физическая величина, равная отношению модуля напряженности (vec_0) внешнего электрического поля в вакууме к модулю напряженности (vec) полного поля в однородном диэлектрике, называется диэлектрической проницаемостью вещества (varepsilon) .

Электроемкостью системы из двух проводников называется физическая величина, определяемая как отношение заряда (q) одного из проводников к разности потенциалов (Delta varphi) между ними:

Единицы измерения: (displaystyle [text<Ф>]) (фарад).

Величина электроемкости зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники.

Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами , а проводники, составляющие конденсатор, — обкладками .

Плоский конденсатор — система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика.

Электроемкость плоского конденсатора

Разность потенциалов (Delta varphi) между пластинами в однородном электрическом поле равна (Ed) , где (d) — расстояние между пластинами. Из этих соотношений можно получить формулу для электроемкости плоского конденсатора:

Таким образом, электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними. Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в (varepsilon) раз:

Электрическое поле плоского конденсатора в основном локализовано между пластинами; однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния. В целом ряде задач приближенно можно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками.

Последовательное и параллельное соединение конденсаторов

Для достижения нужной емкости или при напряжении, превышающем номинальное напряжение, конденсаторы, могут соединяться последовательно или параллельно. Любое же сложное соединение состоит из нескольких комбинаций последовательного и параллельного соединений.

Последовательное соединение конденсаторов

При последовательном соединении, конденсаторы подключены таким образом, что только первый и последний конденсатор подключены к источнику тока одной из своих пластин. Заряд одинаков на всех пластинах , но внешние заряжаются от источника, а внутренние образуются только за счет разделения зарядов ранее нейтрализовавших друг друга. При этом заряд конденсаторов в батарее меньше, чем, если бы каждый конденсатор подключался бы отдельно. Следовательно, и общая емкость батареи конденсаторов меньше.

Напряжение на данном участке цепи соотносятся следующим образом:

Зная, что напряжение конденсатора можно представить через заряд и емкость, запишем:

Сократив выражение на (Q) , получим формулу:

Откуда эквивалентная емкость батареи конденсаторов соединенных последовательно:

Параллельное соединение конденсаторов

При параллельном соединении конденсаторов напряжение на обкладках одинаковое, а заряды разные.

Величина общего заряда полученного конденсаторами, равна сумме зарядов всех параллельно подключенных конденсаторов. В случае батареи из двух конденсаторов:

Так как заряд конденсатора

А напряжения на каждом из конденсаторов равны, получаем следующее выражение для эквивалентной емкости двух параллельно соединенных конденсаторов

По сути, расчет общей емкости конденсаторов схож с расчетом общего сопротивления цепи в случае с последовательным или параллельным соединением, но при этом, зеркально противоположен.

Энергия заряженного конденсатора

Заряженный конденсатор обладает энергией. В этом можно убедиться на опыте. Если зарядить конденсатор и замкнуть его на лампочку, то (при условии того, что ёмкость конденсатора достаточно велика) лампочка ненадолго загорится. Следовательно, в заряженном конденсаторе запасена энергия, которая и выделяется при его разрядке.

Вычислим эту энергию: начнём с плоского воздушного конденсатора.

Ответим на такой вопрос: какова силу притяжения его обкладок друг к другу. Величины используем следующие: заряд конденсатора (q) , площадь обкладок (S) . Возьмём на второй обкладке настолько маленькую площадку, что заряд (q_0) этой площадки можно считать точечным. Данный заряд притягивается к первой обкладке с силой

где (E_1) — напряжённость поля первой обкладки:

Направлена эта сила параллельно линиям поля (т.е. перпендикулярно пластинам). Результирующая сила (F) притяжения второй обкладки к первой складывается из всех этих сил (F_0) , с которыми притягиваются к первой обкладке всевозможные маленькие заряды (q_0) второй обкладки. При этом суммировании постоянный множитель (displaystyledfrac<2varepsilon_0S>) вынесется за скобку, а в скобке просуммируются все (q_0) и дадут (q) . В результате получим

Предположим теперь, что расстояние между обкладками изменилось от начальной величины (d_1) до конечной величины (d_2) . Сила притяжения пластин совершает при этом работу [A = F(d_1 -d_2)]

Знак правильный: если пластины сближаются ((d_2 , то сила совершает положительную работу, так как пластины притягиваются друг к другу. Наоборот, если удалять пластины ((d_2 > d_1)) , то работа силы притяжения получается отрицательной, как и должно быть.

Это можно переписать следующим образом: [A =-(W_2-W_1) =-Delta W,]

Работа потенциальной силы (F) притяжения обкладок оказалась равна изменению со знаком минус величины (W) . Это как раз и означает, что (W) — потенциальная энергия взаимодействия обкладок, или энергия заряженного конденсатора. Используя соотношение (q = CU) , можно получить ещё две формулы для энергии конденсатора (проделать это самостоятельно).

Формулы (1)—(3) универсальны: они справедливы как для воздушного конденсатора, так и для конденсатора с диэлектриком.

В помощь изучающему электронику

Формулы, вычисления, .

– Емкость, конденсатор –

Данный справочник собран из разных источников. Но на его создание подтолкнула небольшая книжка “Массовой радиобиблиотеки” изданная в 1964 году, как перевод книги О. Кронегера в ГДР в 1961 году. Не смотря на такую ее древность, она является моей настольной книгой (наряду с несколькими другими справочниками). Думаю время над такими книгами не властно, потому что основы физики, электро и радиотехники (электроники) незыблемы и вечны.

Единица емкости фарада (ф) емкость такого конденсатора, увеличение заряда которого на 1 кулон (к) вызывает повышение разности потенциалов между обкладками конденсатора на 1 в:

С емкость, ф;
Q количество электричества, к;
U напряжение, в.
На практике обычно пользуются значительно более мелкими единицами емкости см Таблицу 1.

Напряженность поля Е между двумя пластинами (обкладками) конденсатора вычисляется по формуле

U напряжение между обкладками, S;
a расстояние между пластинами, м.
Так как на обеих пластинах конденсатора накапливаются заряды противоположной полярности, то эти пластины взаимно притягиваются с силой F. Она рассчитывается в ньютонах (н) следующим образом:

Накопленная в конденсаторе энергия, определяемая в джоулях (дж) , равна:

ΔUс изменение напряжения на обкладках конденсатора за время Δt.
Эта формула имеет важное практическое значение, она показывает, что напряжение на конденсаторе при его заряде не сразу достигает своего максимального значения.

Точно так же при разряде конденсатора напряжение убывает до нуля не сразу, а постепенно. Конденсатору всегда присущи потери, которые можно представить себе в виде омического сопротивления, соединенного последовательно или параллельно с конденсатором. Если сопротивление Rv включено последовательно с конденсатором (без потерь) то при заряде его от источника, э.д.с. которого равна Е, а внутреннее сопротивление равно нулю (рис. 2), зарядный ток iзар и напряжение на обкладках конденсатора Uс будут меняться по закону

Е — э. д. с., в;
t время, прошедшее с момента начала заряда, сек.
Величина CRV имеет размерность времени, так как (а • сек/ в) * (в/a) = сек, Ее называют постоянной времени τ конденсатора и она характеризует качество конденсатора и требует учета на временах приближающихся к собственной τ. Rv определяет и мощность потерь при работе конденсатора в цепях переменного тока.

По тем же законам изменяется ток и при включении последовательно с конденсатором резистора R.

Причем время нарастания для RC цепочки равно:

А время нарастания определяется по графику переходного процесса:

Здесь Ta = t2 – t1. Следует обратить ваше внимание, что Э.Д.С. самоиндукции в переключающих схемах с большими паразитными индуктивностями определяется максимальной скоростью нарастания тока. Контроль и точное измерение (или по крайней мере достаточно точная оценка) скорости нарастания тока является весьма важным для обеспечения надежности таких ключей.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий