Как зависит электрическое сопротивление металлического проводника от температуры

Что такое электрическое сопротивление и как оно зависит от температуры

Любой элемент или участок электрической цепи с точки зрения электромагнитного процесса, происходящего в нем прежде всего характеризуется способностью проводить ток или препятствовать прохождению тока. Это свойство элементов цепи оценивается их электрической проводимостью или величиной, обратной проводимости — электрическим сопротивлением.

Большинство электротехнических устройств состоит из токопроводящих частей, выполненных из металлических проводников, снабженных обычно изоляционным покрытием или оболочкой. Электрическое сопротивление проводника зависит от его геометрических размеров и свойств материала. Величина электрического сопротивления равна

где l — длина проводника, м; s — площадь поперечного сечения проводника, мм 2 ; ρ — удельное сопротивление проводника, ом · мм 2 / м; γ — удельная проводимость, м/ом · мм.

Удельное электрическое сопротивление

Удельное сопротивление и удельная проводимость учитывают свойства материала проводника и дают значения сопротивления и проводимости проводника длиной 1 м и площадью поперечного сечения 1 мм 2 .

По величине удельного сопротивления ρ все материалы можно разделить на три группы:

проводники — металлы и их сплавы ( ρ от 0,015 до 1,2 ом · мм 2 / м);

электролиты и полупроводники ( ρ от 10 2 до 20 6 ом · мм 2 / м);

диэлектрики, или изоляторы ( ρ от 10 10 до 20 11 ом · мм 2 / м).

В электротехнических устройствах применяются материалы как с малыми, так и с большими значениями удельных сопротивлений. Если требуется, чтобы элемент цепи имел незначительное сопротивление (например соединительные провода), его следует выполнять из проводников с малым значением ρ — порядка 0,015—0,03, например из меди, серебра, алюминия.

Другие устройства, наоборот, должны иметь значительные сопротивления (электрические лампы накаливания, нагрева тельные приборы и т. д.), поэтому их токоведущие элементы следует выполнять из материалов с большим удельным сопротивлением ρ , обычно представляющих собой сплавы металлов. К ним относятся, например, манганин, константан, нихром, которые имеют значения ρ от 0,1 до 1,2.

Зависимость электрического сопротивления от температуры

Величина электрического сопротивления зависит также от температуры проводника, которая может изменяться вследствие нагревания проводника электрическим током или вследствие изменения температуры внешней среды. При изменении температуры проводника изменяется величина его удельного сопротивления. Приведенные выше значения р для некоторых материалов справедливы при температуре

Независимость сопротивления от температуры приближенно выражается так:

R t o = R 20 о · [ 1 + α· (t o -20°) ]

R t o — сопротивление проводника при температуре t o , R 20 о — то же при температуре 20°С, ом; α — температурный коэффициент электрического сопротивления, показывающий относительное изменение сопротивления проводин ка при нагревании его на 1°С.

Из этого выражения величина α равна

Для большинства металлов и их сплавов величина α > 0, т. е. при нагревании сопротивление их увеличивается и наоборот.

Для проводков из чистых металлов значения а колеблются в пределах от 0,0037 до 0,0065 на 1°С. Для сплавов высокого сопротивления α имеет весьма малые значения, в десятки и сотни раз меньшие, чем у проводников из чистых металлов. Так например, для манганина α = 0,000015 на °С.

Значения α для полупроводников электролитов отрицательны, порядка 0,02. Температурный коэффициент электрического сопротивления также отрицателен и по своему абсолютному значению в десятки раз превышает α для металлов.

Зависимость сопротивления от температуры широко используется в технике для измерения температур при помощи так называемых термометров сопротивления , у которых α должен быть большим. В ряде приборов, наоборот, применяются материалы с малым значением α для того, чтобы исключить влияние колебаний температуры на показания этих приборов.

Сопротивление переменного тока

Сопротивление одного и того же проводника для переменного тока будет больше, чем для постоянного. Это объясняется явлением так называемого поверхностного эффекта, заключающегося в том, что переменный ток вытесняется от центральной части проводника к периферийным слоям. В результате плотность тока во внутренних слоях будет меньше, чем в наружных.

Таким образом, при переменном токе сечение проводника используется как бы неполностью. Однако при частоте 50 гц различие в сопротивлениях постоянному и переменному токам незначительно и практически им можно пренебречь.

Сопротивление проводника постоянному току называют омическим, а переменному току — активным сопротивлением. Омическое и активное сопротивления зависят от материала (внутренней структуры), геометрических размеров и температуры проводника. Кроме того, в катушках со стальным сердечником на величину активного сопротивления влияют потери в стали.

К активным сопротивлениям относят электрические лампы накаливания, электрические печи сопротивления, различные нагревательные приборы, реостаты и провода, где электрическая энергия практически почти целиком превращается в тепловую.

Кроме активного сопротивления в цепях переменного тока есть индуктивное и емкостное сопротивления (смотрите – Что такое индуктивная и емкостная нагрузка).

Сопротивление изоляции

Надежность работы электрической сети и аппаратуры в значительной степени зависит от качества изоляции между токоведущими частями различных фаз, а также между токоведущими частями и землей.

Качество изоляции характеризуется величиной ее сопротивления. Определением этой величины обычно ограничиваются при контрольных испытаниях сетей и установок с напряжением меньше 1000 В. Для установок более высокого напряжения дополнительно определяются электрическая прочность и диэлектрические потери.

В зависимости от состояния сети (сеть с выключенными или включенными приемниками энергии, находящаяся или не находящаяся под напряжением) применяют различные схемы включения измерительных приборов и способы подсчета величины сопротивления изоляции. Наиболее широко для этой цели используются мегаомметры и вольтметры.

Задача определения сопротивления изоляции специфична и обширна по объему, поэтому для ее изучения рекомендуем обратиться к этой статье: Как пользоваться мегаомметром

Для чего нужен расчет проводов на нагрев

Электрическое сопротивление влияет на нагрев проводов и кабелей. Провода, соединяющие источник энергии с приемниками, должны обеспечить питание приемников с малой потерей напряжения и энергии и но при этом они не должны нагреваться проходящим по ним током выше допустимой температуры.

Превышение допустимых значений температуры приводит к повреждению изоляции проводов и, как следствие этого, к короткому замыканию, т. е. резкому повышению величины тока в цепи. Поэтому расчет проводов позволяет определить площадь их поперечного сечения, при которой потеря напряжения и нагревание проводов будут в пределах нормы.

Обычно сечение проводов и кабелей на нагрев проверяется по таблицам допустимых токовых нагрузок из ПУЭ. Если сечение не подходит по условиям нагрева, следует выбрать большее сечение, которое удовлетворяет этим требованиям.

Установки нагрева сопротивлением

Основными элементами электропечей являются электрические нагревательные элементы и теплоизоляционное устройство, предотвращающее потери тепла в окружающее пространство. В качестве материала для электрических нагревательных элементов используются жароупорные неметаллические материалы с высоким удельным сопротивлением (уголь, графит, карборунд) и металлические материалы (нихром, константан, фехраль и т. п.).

Применение материалов с высоким удельным сопротивлением ρ позволяет конструировать нагревательные элементы с большой площадью поперечного сечения и поверхности, а выбор материалов, обладающих небольшим коэффициентом расширения α , обеспечивает неизменяемость геометрических размеров элемента при нагреве.

Нагревательные элементы из материалов типа графита изготавливаются в виде стержней с трубчатым или сплошным сечением. Металлические нагревательные элементы изготовляются в виде проволоки или ленты.

Использование плавких предохранителей

Для защиты проводов электрической цепи от токов, превышающих допустимые значения, применяются автоматические выключатели и плавкие предохранители различных типов. В принципе плавкий предохранитель представляет собой участок электрической цепи с малой термической устойчивостью.

Плавкую вставку предохранителя обычно выполняют в виде короткого проводника малого сечения из материала с хорошей проводимостью (медь, серебро) или проводника с относительно высоким удельным сопротивлением (свинец, олово). При увеличении тока сверх значения, на которое рассчитана плавкая вставка, последняя перегорает и отключает защищаемый ею участок цепи или токоприемник.

Зависимость сопротивления проводника от температуры. Сверхпроводимость

Урок 57. Физика 10 класс ФГОС

В данный момент вы не можете посмотреть или раздать видеоурок ученикам в личном кабинете

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно его приобрести.

Получите невероятные возможности

Конспект урока “Зависимость сопротивления проводника от температуры. Сверхпроводимость”

Изучая закон Ома для участка цепи мы с вами ввели понятие электрического сопротивления, как физическую величину, характеризующую свойства проводника препятствовать прохождению электрического тока в нём.

При этом мы с вами показали, что сопротивление проводника прямо пропорционально его длине, обратно пропорционально площади поперечного сечения и зависит от вещества, из которого этот проводник изготовлен:

Напомним, что электрические свойства проводника характеризуются его удельным сопротивлением.

Как вы знаете, в таблицах удельных сопротивлений веществ очень часто указывается температура, при которой удельное сопротивление было измерено. Тогда логично предположить, что сопротивление проводника должно каким-то образом зависеть от температуры.

Проверим это предположение на опыте. Для этого соберём электрическую цепь, состоящую из источника тока, проволочной спирали и амперметра. Включим источник тока, и отметим показание амперметра.

А теперь давайте нагреем исследуемую спиральку, например, с помощью спиртовки. Не трудно увидеть, что показания амперметра начинают уменьшаться. Вывод очевиден: при увеличении температуры сопротивление металлов увеличивается.

Объясняется этот факт достаточно просто. Вы знаете, что удельное сопротивление вещества металлического проводника зависит от концентрации свободных носителей заряда и числа их столкновений с ионами кристаллической решётки, совершающими колебательные движения около положений устойчивого равновесия. В металлических проводниках концентрация свободных электронов практически постоянна для данного проводника и не зависит от температуры.

Однако число столкновений свободных электронов с ионами кристаллической решётки с ростом температуры возрастает. Это приводит к возрастанию удельного сопротивления металлического проводника при повышении температуры.

Если принять, что при 273 К (то есть при 0 о С) удельное сопротивление проводника равно ρ0, а при температуре Т оно равно ρ, то, как показывает опыт, относительное изменение удельного сопротивления пропорционально изменению абсолютной температуры (которое, напомним, совпадает с изменением температуры по шкале Цельсия):

В записанном уравнении α — это температурный коэффициент. Он численно равен относительному изменению удельного сопротивления вещества проводника при изменении его температуры на 1 К:

Таким образом, удельное сопротивление вещества металлического проводника возрастает с увеличением температуры.

Поскольку сопротивление проводника прямо пропорционально удельному сопротивлению вещества, из которого изготовлен проводник, то, не учитывая незначительную температурную зависимость отношения l/S, можно записать такие соотношения:

Здесь R0 и R — это сопротивления проводника соответственно при нуле градусов Цельсия и при данной температуре.

Отметим, что для металлических проводников эти формулы применимы при температурах более T >140 К.

У всех металлов при повышении температуры сопротивление возрастает. То для них температурный коэффициент сопротивления — это величина положительная. У растворов же электролитов наоборот с ростом температуры сопротивление уменьшается. Значит их температурный коэффициент сопротивления меньше нуля.

Для большинства металлов (но не сплавов) при температурах от 0 для 100 о С температурный коэффициент можно считать постоянным и равным его среднему значению на этом интервале температур:

Давайте, для примера определим сопротивление алюминиевого проводника при температуре 90 о С, если при температуре 20 о С его сопротивление равно 4 Ом. Температурный коэффициент сопротивления алюминия α = 4,2 · 10 –3 К –1 .

Зависимость сопротивления металлов от температуры используют в специальных приборах — термометрах сопротивления. Широкое распространение получили термометры сопротивления из чистых металлов, особенно платины и меди, которые конструктивно представляют собой металлическую проволоку, намотанную на жёсткий каркас (из кварца, фарфора или слюды), заключённый в защитную оболочку (из металла, кварца, фарфора, стекла). Платиновые термометры сопротивления применяют для измерения температуры в пределах от –263 до 1064 o С, а медные — от –50 до 180 o С.

Если при изготовлении электроизмерительных приборов требуются проводники, сопротивление которых должно как можно меньше зависеть от температуры окружающей среды, то используют специальные сплавы — константан и манганин.

В 1911 году голландский физик Хейке Камерлинг-Оннес исследуя зависимость сопротивления ртути от температуры обнаружил одно замечательное явление. Вначале эксперимента всё шло по плану: сопротивление металла при охлаждении постепенно уменьшалось. Однако при температуре меньше либо равной 4,12 К (по современным измерениям при 4,15 К) электрическое сопротивление ртути резко исчезало.

Явление падения до нуля сопротивления проводника при определённой температуре называется сверхпроводимостью, а проводник в этом состоянии — сверхпроводником.

Температуру, при которой электрическое сопротивление проводника обращается в ноль, называют критической температурой.

Открытие Камерлинг-Оннеса, за которое в 1913 году ему была присуждена Нобелевская премия, повлекло за собой исследования свойств веществ при низких температурах. Позже многочисленными опытами было установлено, что это явление характерно для многих проводников. Каждый сверхпроводящий металл характеризуется своей критической температурой.

У веществ в сверхпроводящем состоянии были отмечены резкие аномалии магнитных, тепловых и ряда других свойств. Так, например, если в кольцевом проводнике, находящемся в сверхпроводящем состоянии, создать ток, а затем удалить источник тока, то сила этого тока в таком проводнике не меняется сколь угодно долго. В обычном же (несверхпроводящем) проводнике электрический ток в этом случае прекращается. Это указывает на перспективу использования явления сверхпроводимости при передаче электрической энергии.

Сверхпроводящие соединения нашли применение в качестве материала обмоток электромагнитов для создания сильных магнитных полей в установках управляемого термоядерного синтеза, а также в мощных электрических двигателях и генераторах.

Объяснение сверхпроводимости возможно только на основе квантовой теории. Оно было дано лишь в 1957 году американскими учёными Джоном Бардиным, Леоном Купером и Джоном Шриффером, а также советским учёным и академиком Николаем Николаевичем Боголюбовым.

Очень упрощённо механизм сверхпроводимости можно объяснить так: при критической температуре электроны объединяются в правильную шеренгу и движутся, не сталкиваясь с кристаллической решёткой, состоящей из ионов. Это движение существенно отличается от обычного теплового движения, при котором свободный электрон движется хаотично.

В 1986 году была открыта высокотемпературная сверхпроводимость. Получены сложные оксидные соединения лантана, бария и других элементов с температурой перехода в сверхпроводящее состояние около 100 К. Это выше температуры кипения жидкого азота при атмосферном давлении (77 К).

Высокотемпературная сверхпроводимость в недалёком будущем приведёт наверняка к новой технической революции во всей электротехнике, радиотехнике и конструировании компьютеров.

Физика. 10 класс

Конспект урока

Физика, 10 класс

Урок 32. Электрический ток в металлах

Перечень вопросов, рассматриваемых на уроке:

1) прохождение тока в металлах;

2) зависимость сопротивления металлов от температуры;

3) явление сверхпроводимости.

Глоссарий по теме

Свободные электроны – это электроны, не связанные с определенными атомами.

Сверхпроводимость – физическое явление, заключающееся в скачкообразном падении до нуля сопротивления вещества.

Температурный коэффициент сопротивления – величина, равная относительному изменению электрического сопротивления участка электрической цепи или удельного сопротивления вещества при изменении температуры на 1 К.

Основная и дополнительная литература по теме урока:

Мякишев Г. Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 216-224.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. – М.: Дрофа, 2009.- С.81-89.

М.М. Балашов О природе М., Просвещение, 1991г.

Е.А. Марон, А.Е. Марон Сборник качественных задач по физике. М., Просвещение, 2006

Я.И. Перельман Занимательная физика. М.: “Наука”, 1991.

Основное содержание урока

Все тела по проводимости электрического тока делятся на проводники, полупроводники и диэлектрики. Для того чтобы электрическую энергию доставить от источника тока потребителю составляют электрические цепи. В большинстве случаев в электрической цепи используются металлические провода. По физической природе зарядов – носителей электрического тока, электропроводность подразделяют на:

Какие заряженные частицы движутся в металлах при наличии тока?

После открытия в 1897 году английским ученым Дж. Дж. Томсоном электрона стали разрабатываться теории, объясняющие электропроводность металлов. Автором первой теории был Пауль Друде – немецкий физик. Эта теория нуждалась в опытном обосновании. В 1901 г. немецкий физик Э. Рикке поставил опыт по исследованию прохождения тока в металлах.

Результаты опыта свидетельствовали о том, что в переносе заряда в металлах ионы не участвуют. Впоследствии вопросом проводимости металлов заинтересовались и другие учёные. В 1913 году российские учёные Л. И. Мандельштам и Н. Д. Папалекси провели опыты по исследованию проводимости металлов. Суть опытов сводилась к тому, что катушка, на которую наматывали металлическую проволоку приводили во вращательное движение и резко тормозили. При торможении электроны продолжали двигаться по инерции и гальванометр, соединенный с катушкой фиксировал появление тока. По направлению отклонения стрелки гальванометра было установлено, что ток создается движением отрицательно заряженных частиц. На основании измерения отношения заряда частиц к их массе выяснилось, что ток создается движением свободных электронов. Аналогичный опыт был поставлен в 1916 году американскими учеными Т. Стюартом и Р. Толменом. Результаты опытов говорили, что ток в металлах создается движением электронов.

После анализа имеющихся данных о прохождении тока в металлах разными учеными была разработана современная классическая теория проводимости тока металлами. Основные положения электронной теории проводимости металлов.

1. Металл можно описать следующей моделью: кристаллическая решетка ионов погружена в идеальный электронный газ, состоящий из свободных электронов. У большинства металлов каждый атом ионизирован, поэтому концентрация свободных электронов приблизительно равна концентрации атомов 1023- 1029м-3 и почти не зависит от температуры.

2.Свободные электроны в металлах находятся в непрерывном хаотическом движении.

3. Электрический ток в металле образуется только за счет упорядоченного движения свободных электронов.

Опираясь на данную теорию удалось объяснить основные законы электрического тока в металлах. Исходя из электронной теории можно найти связь между силой тока в металлах и скоростью движения электронов.

Сила тока равна произведению заряда электрона, их концентрации, площади сечения проводника и средней скорости движения электронов:

Отсюда . По этой формуле можно найти среднюю скорость движения электронов.

Если в эту формулу подставлять числовые данные силы тока, концентрации и площади сечения для разных металлов, то мы увидим, что средняя скорость движения электронов составляет всего лишь какие-то доли миллиметра в секунду. Когда говорят о скорости распространения тока имеют в виду скорость распространения электрического поля в проводнике, которое равно скорости света.

На силу тока в проводнике влияет и сопротивление проводника. Опыт показывает, что сопротивление металлов зависит от температуры. Увеличение сопротивления можно объяснить тем, при повышении температуры увеличивается скорость и амплитуда хаотического движения ионов кристаллической решетки металла и свободных электронов. Это приводит к более частым их соударениям, что затрудняет направленное движение электронов, то есть увеличивает электрическое сопротивление.

зависимость сопротивления металлов от температуры выражается формулой:

При нагревании размеры проводника практически не меняются, в основном меняется удельное сопротивление. Учет зависимости сопротивления от температуры используется в термометрах сопротивления.

Формула зависимости удельного сопротивления металлического проводника от температуры имеет вид:

где ρ0 – удельное сопротивление при 0 градусов,

α – температурный коэффициент сопротивления.

Графиком зависимости ⍴(t) является прямая.

Хотя коэффициент α довольно мал, учет зависимости сопротивления от температуры при расчете нагревательных приборов совершенно необходим.

При понижении температуры сопротивление металлов должно уменьшаться. В 1911 году датский физик Х. Каммерлинг – Оннес открыл явление, названное сверхпроводимостью. Исследуя зависимость сопротивления ртути от температуры, он обнаружил, что при температуре 4,12 К сопротивление ртути исчезает. В сверхпроводящее состояние могут перейти многие химические соединения и сплавы. Некоторые вещества, переходящие при низких температурах в сверхпроводящее состояние, не являются проводниками при обычных температурах.

Вещества, находящиеся в сверхпроводящем состоянии, приобретают новые свойства. Наиболее важным из них является способность длительное время (многие годы) поддерживать без затухания электрический ток в проводниках.

Классическая электронная теория не способна объяснить явление сверхпроводимости. Теоретическое объяснение явления сверхпроводимости на основе квантово-механических представлений было дано учеными Дж. Бардиным, Дж. Шриффером (США) и Н. Н. Боголюбовым (СССР) в 1957 г.

В 1986 году была обнаружена высокотемпературная сверхпроводимость (при 100 К).

В настоящее время ведутся интенсивные работы по поиску новых веществ переходящими в сверхпроводящее состояние при более высокой температуре. Ученые надеются получить вещество в сверхпроводящем состоянии при комнатной температуре. Если удастся создать сверхпроводник при нормальной температуре, то будет решена проблема передачи электроэнергии по проводам без потерь.

Следует отметить, что до настоящего времени механизм высокотемпературной сверхпроводимости керамических материалов до конца не выяснен.

Открытие вещества, переходящего в сверхпроводящее состояние при комнатной температуре, позволило бы упростить решение многих технических вопросов. Во-первых, отсутствие сопротивления означает отсутствие каких-либо потерь на нагревание. Отсутствие нагревания и потерь энергии на него чрезвычайно важно для электродвигателей и электронной вычислительной техники, а также для передачи электроэнергии.

В сверхпроводниках из-за отсутствия сопротивления протекают чрезвычайно высокие токи, создающие сильные магнитные поля, что может применяться при термоядерном синтезе для удержания высокотемпературной плазмы в реакторе.

На сегодняшний момент в некоторых странах существует железнодорожная сеть с поездами на магнитной подушке. После открытия сверхпроводимости Камерлинг-Оннес, пытаясь создать сверхпроводящий электромагнит, обнаружил, что изменение тока, или же магнитные поля, разрушают эффект сверхпроводимости. Только к середине двадцатого века удалось создать сверхпроводящие электромагниты. На данный момент продолжаются исследования по изучению высокотемпературной сверхпроводимости.

Разбор типовых тренировочных заданий

1. Сопротивление железного проводника при 0 0 С и 600 0 С равны соответственно 2 Ом и 10 Ом. Каков температурный коэффициент железа?

Зависимость сопротивления металлов от температуры определяется формулой

Из этой формулы выразим температурный коэффициент железа – α

После подстановки числовых данных получаем

2. Какова скорость дрейфа электронов в медном проводе диаметром 5 мм, по которому к стартеру грузовика подводится ток 100 А. Молярная масса меди

Сила тока в проводнике равна:

Выразим скорость из этой формулы:

Концентрацию электронов найдем по формуле:

Число электронов найдём по формуле:

Площадь сечения равна:

Учитывая всё это запишем конечную формулу для расчёта скорости дрейфа электронов:

Как зависит электрическое сопротивление металлического проводника от температуры

«Физика – 10 класс»

Какую физическую величину называют сопротивлением
От чего и как зависит сопротивление металлического проводника?

Различные вещества имеют разные удельные сопротивления. Зависит ли сопротивление от состояния проводника? от его температуры? Ответ должен дать опыт.

Если пропустить ток от аккумулятора через стальную спираль, а затем начать нагревать её в пламени горелки, то амперметр покажет уменьшение силы тока. Это означает, что с изменением температуры сопротивление проводника меняется.

Если при температуре, равной 0 °С, сопротивление проводника равно R0, а при температуре t оно равно R, то относительное изменение сопротивления, как показывает опыт, прямо пропорционально изменению температуры t:

Коэффициент пропорциональности α называют температурным коэффициентом сопротивления.

Температурный коэффициент сопротивления — величина, равная отношению относительного изменения сопротивления проводника к изменению его температуры.

Он характеризует зависимость сопротивления вещества от температуры.

Температурный коэффициент сопротивления численно равен относительному изменению сопротивления проводника при нагревании на 1 К (на 1 °С).

Для всех металлических проводников коэффициент α > 0 и незначительно меняется с изменением температуры. Если интервал изменения температуры невелик, то температурный коэффициент можно считать постоянным и равным его среднему значению на этом интервале температур. У чистых металлов

У растворов электролитов сопротивление с ростом температуры не увеличивается, а уменьшается. Для них α -1 .

При нагревании проводника его геометрические размеры меняются незначительно. Сопротивление проводника меняется в основном за счёт изменения его удельного сопротивления. Можно найти зависимость этого удельного сопротивления от температуры, если в формулу (16.1) подставить значения Вычисления приводят к следующему результату:

где ΔТ — изменение абсолютной температуры.

Так как а мало меняется при изменении температуры проводника, то можно считать, что удельное сопротивление проводника линейно зависит от температуры (рис. 16.2).

Увеличение сопротивления можно объяснить тем, что при повышении температуры увеличивается амплитуда колебаний ионов в узлах кристаллической решётки, поэтому свободные электроны сталкиваются с ними чаще, теряя при этом направленность движения. Хотя коэффициент а довольно мал, учёт зависимости сопротивления от температуры при расчёте параметров нагревательных приборов совершенно необходим. Так, сопротивление вольфрамовой нити лампы накаливания увеличивается при прохождении по ней тока за счёт нагревания более чем в 10 раз.

У некоторых сплавов, например у сплава меди с никелем (Константин), температурный коэффициент сопротивления очень мал: α ≈ 10 -5 К -1 ; удельное сопротивление Константина велико: ρ ≈ 10 -6 Ом • м. Такие сплавы используют для изготовления эталонных резисторов и добавочных резисторов к измерительным приборам, т. е. в тех случаях, когда требуется, чтобы сопротивление заметно не менялось при колебаниях температуры.

Существуют и такие металлы, например никель, олово, платина и др., температурный коэффициент которых существенно больше: α ≈ 10 -3 К -1 . Зависимость их сопротивления от температуры можно использовать для измерения самой температуры, что и осуществляется в термометрах сопротивления.

На зависимости сопротивления от температуры основаны и приборы, изготовленные из полупроводниковых материалов, — термисторы. Для них характерны большой температурный коэффициент сопротивления (в десятки раз превышающий этот коэффициент у металлов), стабильность характеристик во времени. Номинальное сопротивление термисторов значительно выше, чем у металлических термометров сопротивления, оно обычно составляет 1, 2, 5, 10, 15 и 30 кОм.

Обычно в качестве основного рабочего элемента термометра сопротивления берут платиновую проволоку, зависимость сопротивления которой от температуры хорошо известна. Об изменениях температуры судят по изменению сопротивления проволоки, которое можно измерить.Такие термометры позволяют измерять очень низкие и очень высокие температуры, когда обычные жидкостные термометры непригодны.

Сверхпроводимость.

Сопротивление металлов уменьшается с уменьшением температуры. Что произойдёт при стремлении температуры к абсолютному нулю?

В 1911 г. голландский физик X. Камерлинг-Оннес открыл замечательное явление — сверхпроводимость. Он обнаружил, что при охлаждении ртути в жидком гелии её сопротивление сначала меняется постепенно, а затем при температуре 4,1 К очень резко падает до нуля (рис. 16.3).

Явление падения до нуля сопротивления проводника при критической температуре называется сверхпроводимостью.

Открытие Камерлинг-Оннеса, за которое в 1913 г. ему была присуждена Нобелевская премия, повлекло за собой исследования свойств веществ при низких температурах. Позже было открыто много других сверхпроводников.

Сверхпроводимость многих металлов и сплавов наблюдается при очень низких температурах — начиная примерно с 25 К. В справочных таблицах приводятся температуры перехода в сверхпроводящее состояние некоторых веществ.

Температура, при которой вещество переходит в сверхпроводящее состояние, называется критической температурой.

Критическая температура зависит не только от химического состава вещества, но и от структуры самого кристалла. Например, серое олово имеет структуру алмаза с кубической кристаллической решёткой и является полупроводником, а белое олово обладает тетрагональной элементарной ячейкой и является серебристо-белым, мягким, пластичным металлом, способным при температуре, равной 3,72 К, переходить в сверхпроводящее состояние.

У веществ в сверхпроводящем состоянии были отмечены резкие аномалии магнитных, тепловых и ряда других свойств, так что правильнее говорить не о сверхпроводящем состоянии, а об особом, наблюдаемом при низких температурах состоянии вещества.

Если в кольцевом проводнике, находящемся в сверхпроводящем состоянии, создать ток, а затем удалить источник тока, то сила этого тока не меняется сколь угодно долго. В обычном же (несверхпроводящем) проводнике электрический ток в этом случае прекращается.

Сверхпроводники находят широкое применение. Так, сооружают мощные электромагниты со сверхпроводящей обмоткой, которые создают магнитное поле на протяжении длительных интервалов времени без затрат энергии. Ведь выделения тепла в сверхпроводящей обмотке не происходит.

Однако получить сколь угодно сильное магнитное поле с помощью сверхпроводящего магнита нельзя. Очень сильное магнитное поле разрушает сверхпроводящее состояние. Такое поле может быть создано и током в самом сверхпроводнике. Поэтому для каждого проводника в сверхпроводящем состоянии существует критическое значение силы тока, превысить которое, не нарушая сверхпроводящего состояния, нельзя.

Сверхпроводящие магниты используются в ускорителях элементарных частиц, магнитогидродинамических генераторах, преобразующих механическую энергию струи раскалённого ионизованного газа, движущегося в магнитном поле, в электрическую энергию.

Объяснение сверхпроводимости возможно только на основе квантовой теории. Оно было дано лишь в 1957 г. американскими учёными Дж. Бардиным, Л. Купером, Дж. Шриффером и советским учёным, академиком Н. Н. Боголюбовым.

В 1986 г. была открыта высокотемпературная сверхпроводимость. Получены сложные оксидные соединения лантана, бария и других элементов (керамики) с температурой перехода в сверхпроводящее состояние около 100 К. Это выше температуры кипения жидкого азота при атмосферном давлении (77 К).

Высокотемпературная сверхпроводимость в недалёком будущем приведёт наверняка к новой технической революции во всей электротехнике, радиотехнике, конструировании ЭВМ. Сейчас прогресс в этой области тормозится необходимостью охлаждения проводников до температур кипения дорогого газа — гелия.

Физический механизм сверхпроводимости довольно сложен. Очень упрощённо его можно объяснить так: электроны объединяются в правильную шеренгу и движутся, не сталкиваясь с кристаллической решёткой, состоящей из ионов. Это движение существенно отличается от обычного теплового движения, при котором свободный электрон движется хаотично.

Надо надеяться, что удастся создать сверхпроводники и при комнатной температуре. Генераторы и электродвигатели станут исключительно компактными (уменьшатся в несколько раз) и экономичными. Электроэнергию можно будет передавать на любые расстояния без потерь и аккумулировать в простых устройствах.

Источник: «Физика – 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Электрический ток в различных средах – Физика, учебник для 10 класса – Класс!ная физика

Физика. 10 класс

§ 34. Электрический ток в металлах. Сверхпроводимость

Типичными представителями класса проводников являются металлы. Какова природа электрического тока в металлах?

Природа электрического тока в металлах. В металлических проводниках носители электрического заряда — свободные электроны. Под действием внешнего электрического поля свободные электроны упорядоченно движутся, создавая электрический ток ( рис. 194 ).

Электронная проводимость металлов была впервые экспериментально подтверждена немецким физиком К. Рикке ( 1845–1915 ) в 1901 г. Суть опыта Рикке заключалась в следующем: по проводнику, состоявшему из трёх отполированных и плотно прижатых друг к другу цилиндров — двух медных и одного алюминиевого ( рис. 195 ), в течение года проходил ток одного и того же направления. За этот промежуток времени через проводник прошёл заряд более 3,5 МКл. После завершения опыта взвешивание показало, что массы цилиндров остались неизменными. Это явилось экспериментальным доказательством того, что перенос заряда при прохождении тока в металлах не сопровождается химическими процессами и переносом вещества, а осуществляется частицами, которые являются одинаковыми для всех металлов, т. е. электронами.

В 1916 г. американский физик Р. Толмен ( 1881—1948 ) и шотландский физик Т. Стюарт усовершенствовали методику этих опытов и выполнили количественные измерения, неопровержимо доказавшие, что ток в металлических проводниках обусловлен движением свободных электронов.

В этих опытах катушку с большим числом витков тонкой проволоки подключали к гальванометру и приводили в быстрое вращение вокруг своей оси ( рис. 195.1 ). При резком торможении катушки в цепи возникал кратковременный ток, обусловленный инерцией носителей заряда. По направлению отклонения стрелки гальванометра было установлено, что электрический ток создают отрицательно заряженные частицы. При этом экспериментально полученное отношение заряда каждой из этих частиц к её массе (удельный заряд) близко к удельному заряду электрона, полученному из других опытов. Так было экспериментально доказано, что носителями свободных зарядов в металлах являются электроны.

Вещества, обладающие электронной проводимостью, называют проводниками первого рода.

В соответствии с классической электронной теорией проводимости металлов, созданной немецким физиком П. Друде ( 1863–1906 ) в 1900 г., металлический проводник можно рассматривать как физическую систему, состоящую из свободных электронов и положительно заряженных ионов, колеблющихся около положений равновесия ( рис. 196 ).

Появление свободных электронов при образовании металлического кристалла из нейтральных атомов можно упрощённо объяснить следующим образом. Электроны, находящиеся на внешних оболочках атомов, слабо связаны со своими ядрами. При образовании кристалла атомы сближаются на расстояние r 0,1 нм , и электроны начинают взаимодействовать не только со своими ядрами, но и с ядрами соседних атомов. В результате этого их взаимодействие с собственными ядрами значительно ослабевает, вследствие чего они теряют с ними связь и могут двигаться по всему кристаллу в любом направлении как свободные частицы. Атомы превращаются при этом в положительно заряженные ионы. В пространстве между ионами беспорядочно движутся подобно частицам идеального газа свободные электроны. Поэтому для описания движения электронов используют модель «электронный газ» — совокупность свободных электронов в кристаллической решётке металла. На рисунке 196.1 пунктирной линией изображена траектория движения одного из электронов.

В этой модели электроны, упорядоченное движение которых является током проводимости, рассматривают как материальные точки, модуль потенциальной энергии взаимодействия которых пренебрежимо мал по сравнению с их кинетической энергией. Считают, что движение электронов под действием электрического поля подчиняется законам классической механики, а их столкновения с ионами кристаллической решётки металла являются неупругими, т. е. при столкновениях электроны полностью передают ионам кинетическую энергию своего упорядоченного движения. В промежутках между столкновениями свободные электроны совершают беспорядочное тепловое движение и в то же время движутся упорядоченно и равноускоренно под воздействием электрического поля.

Интересно знать

Модель электронного газа позволяет теоретически объяснить природу сопротивления и обосновать закон Ома для участка цепи, не содержащего источника тока, на основе классической электронной теории проводимости металлов. Проанализируем упорядоченное движение электронов проводимости.

Пусть электрон движется с ускорением в направлении, противоположном направлению напряжённости электрического поля ( рис. 196.2 ): где m0 — масса электрона, e — элементарный электрический заряд (модуль заряда электрона).

Тогда модуль средней скорости его направленного движения: , где — усреднённый промежуток времени между двумя последовательными столкновениями электрона с ионами кристаллической решётки.

Поскольку электрическое поле внутри однородного прямолинейного проводника с током однородное, то модуль напряжённости этого поля где l — длина проводника, U — напряжение между его концами. Тогда модуль средней скорости направленного движения электронов пропорционален напряжению между концами проводника .

Сила тока в проводнике пропорциональна модулю средней скорости направленного движения электронов:

где q — модуль заряда электронов проводимости, находящихся в проводнике, — усреднённое время прохождения этих электронов по проводнику, N — количество электронов проводимости в проводнике, n — концентрация этих электронов, V = Sl — объём проводника. Следовательно, сила тока пропорциональна напряжению между концами проводника I U.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий