Какие защитные газы можно применять при дуговой сварке

Введение в дуговую сварку в защитных газах (TIG, MIG/MAG)

При сварке плавлением в защитных газах в качестве источника нагрева используется мощная электрическая дуга. В дуге электрическая энергия преобразуется в тепловую, плотность которой достаточна для локального плавления основного металла. В условиях атмосферы (21%О2+78%N2) зона сварки должна надежно защищаться от насыщения металла шва кислородом и азотом воздуха, которые ухудшают его свойства. Защитные газы, подаваемые через сопло, вытесняют воздух и таким образом защищают сварочную ванну и электрод. Для заполнения зазора между соединяемыми кромками деталей или разделки кромок и регулирования состава металла шва в зону плавления подают присадочный металл или электродную проволоку. В зависимости от физического состояния электрода различают дуговую сварку неплавящимся (см. Сварка в инертных газах вольфрамовым электродом (TIG)) и плавящимся (см. Сварка плавящимся металлическим электродом в защитных газах (МIG/МАG)) электродами.

Защитные газы и их влияние на технологические свойства дуги

В качестве защитных газов при дуговой сварке плавлением ТИГ и МИГ/МАГ применяют инертные газы, активные газы и их смеси. Защитный газ выбирают с учетом способа сварки, свойств свариваемого металла, а также требований, предъявляемых к сварным швам.

Инертными называют газы, не способные к химическим реакциям и практически не растворимые в металлах. Поэтому их целесообразно применять при сварке химически активных металлов и сплавов на их основе (алюминий, алюминиевые и магниевые сплавы, легированные стали различных марок). При сварке ТИГ и МИГ/МАГ используются такие инертные газы как аргон (Ar), гелий (He) и их смеси.

Активными защитными газами называют газы, способные защищать зону сварки от доступа воздуха и вместе с тем химически реагирующие со свариваемым металлом или физически растворяющиеся в нем. При дуговой сварке сталей в качестве защитной среды применяют углекислый газ (СО2). Ввиду химической активности углекислого газа по отношению к вольфраму этот защитный газ используют только при сварке МИГ/МАГ.

К активным газам применяемым при МИГ/МАГ также относятся газовые смеси в состав которых входят аргон (Ar), кислород (О2), азот (N2), водород (H2). Готовые газовые смеси поставляются в баллонах, также они могут быть получены путем смешивания газов составляющих смесь.

Классификация способов сварки в защитных газах приведена на схеме ниже.

Свойства защитных газов

В таблице ниже приведены физические свойства защитных газов.

Краткая характеристика защитных газов

Аргон – наиболее часто применяемый инертный газ. Он тяжелее воздуха и не образует с ним взрывчатых смесей. Благодаря низкому потенциалу ионизации этот газ обеспечивает высокую стабильность горения дуги. Однако, в тоже время, низкий потенциал ионизации является причиной и низкого напряжения на дуге, что снижает тепловую мощность дуги. Будучи тяжелее воздуха, аргон обеспечивает хорошую газовую защиту сварочной ванны (но только в нижнем положении сварки). Однако он может накапливаться в слабопроветриваемых помещениях у пола. При этом снижается содержание кислорода в воздухе, что может вызвать кислородную недостаточность и удушье у электросварщика. В местах возможного накопления аргона необходимо контролировать содержание кислорода в воздухе приборами автоматического или ручного действия с устройством для дистанционного отбора проб воздуха. Объемная доля кислорода в воздухе должна быть не менее 19%.

Аргон выпускается согласно ГОСТ 10157-79 двух сортов: высшего и первого. Высший сорт рекомендуется использовать при сварке ответственных металлоконструкций из активных и редких металлов и сплавов, цветных металлов. Аргон первого сорта применяют для сварки сталей и чистого алюминия.

Гелий – бесцветный, неядовитый, негорючий и невзрывоопасный газ. Значительно легче воздуха и аргона, что понижает эффективность защиту сварочной ванны при сварке в нижнем положении, но способствует лучшей защите при сварке в потолочном положении. Гелий используется реже, чем аргон, из-за дефицитности и высокой стоимости. Однако, из-за высокого потенциала ионизации, при одном и том же значении тока дуга в гелии выделяет в 1,5-2 раза больше энергии, чем в аргоне. Это способствует более глубокому проплавлению металла и значительно повышает скорость сварки. Для сварки используется гелий трех сортов: марок А, Б и В (по ТУ 51-689-75). Применяют его в основном при сварке химически чистых и активных материалов и сплавов, а также сплавов на основе алюминия и магния.

Часто используются смеси аргона и гелия, причем оптимальным составом считается смесь, содержащая 35-40% аргона и 60-65% гелия. В смеси в полной мере реализуются преимущества обоих газов: аргон обеспечивает стабильность горения дуги, гелий – высокую степень проплавления.

При сварке меди используется азот, так как он к ней химически нейтрален, т.е. не образует с ней никаких химических соединений и в ней не растворяется.

Активные газы

Углекислый газ (двуокись углерода) – бесцветен, не ядовит, тяжелее воздуха. При нормальных условиях (760 мм рт. ст. и 0°С) плотность углекислого газа в 1,5 раза выше плотности воздуха. Углекислый газ хорошо растворяется в воде. Жидкая углекислота – бесцветная жидкость, плотность которой сильно изменяется с изменением температуры. Вследствие этого она поставляется по массе, а не по объему. При испарении 1 кг жидкой углекислоты в нормальных условиях образуется 509 л углекислого газа.

Двуокись углерода нетоксична и невзрывоопасна. Однако при концентрациях более 5% (92 г/м 3 ) двуокись углерода оказывает вредное влияние на здоровье человека. Так как двуокись углерода в 1,5 раз тяжелее воздуха она может накапливаться в слабопроветриваемых помещениях у пола. При этом снижается объемная доля кислорода в воздухе, что может вызвать удушье. Помещения, где производится сварка с использованием двуокиси углерода, должны быть оборудованы общеобменной приточно-вытяжной вентиляцией.

Основными примесями углекислого газа, отрицательно влияющими на процесс сварки и свойства швов, являются воздух (азот воздуха) и вода. Воздух скапливается над жидкой углекислотой в верхней части баллона, а вода – под углекислотой в нижней части баллона. Повышенное содержание воздуха и водяных паров в углекислоте может при сварке привести к образованию пор в швах, которые чаще всего появляются в начале и конце отбора газа из баллона. Чтобы снизить содержание влаги в поступающем на сварку углекислом газе до безопасного уровня, на его пути устанавливают осушитель. Для улавливания влаги осушитель заполнен хлористым кальцием, силикагелем или другими поглотителями влаги.

При выпуске газа из баллона вследствие эффекта дросселирования и поглощения теплоты при испарении жидкой углекислоты газ значительно охлаждается. При интенсивном отборе газа возможна закупорка редуктора замерзшей влагой, содержащейся в углекислоте, а также сухим льдом. Во избежание этого рекомендуется подогревать выходящий из баллона углекислый газ. Для этого используют электрические подогреватели газа, которые устанавливаются перед редуктором.

Углекислый газ оказывает на металл сварочной ванны окисляющее, а также науглероживающее действие. Из легирующих элементов ванны наиболее сильно окисляются алюминий, титан и цирконий, менее интенсивно – кремний, марганец, хром, ванадий и др.

Кислород – это бесцветный нетоксичный газ без запаха. Является сильным окислителем. Накопление кислорода в воздухе помещений создает опасность возникновения пожаров. Поэтому объемная доля кислорода в рабочих помещениях не должна превышать 23 %. В зависимости от содержания кислорода и примесей технический газообразный кислород изготовляют трех сортов. Содержание кислорода в первом сорте должно быть не менее 99,7 об. %, во втором – не менее 99,5 об. % и в третьем – не менее 99,2 об. %.

В сварочном производстве кислород широко применяют для газовой сварки и резки, а также при дуговой сварке как составную часть защитной газовой смеси. Кислород уменьшает поверхностное натяжение металла, и поэтому с увеличением его содержания в смеси на основе аргона критический ток (перехода крупнокапельного переноса в мелкокапельный, см. Сварка плавящимся металлическим электродом в защитных газах (МIG/МАG)) уменьшается. Обычно содержание кислорода в смеси с аргоном не превышает 2-5%. В такой среде дуга горит стабильно. Перенос металла мелкокапельный с минимальным разбрызгиванием.

Азот – бесцветный газ, без запаха, не горит и не поддерживает горение. В сварочном производстве азот находит ограниченное применение. Азот не растворяется в расплавленной меди и не взаимодействует с ней, и поэтому может быть использован при сварке меди в качестве защитного газа. По отношению к большинству других металлов азот является активным газом, часто вредным, и его концентрацию в зоне плавления стремятся ограничить. Азот также применяется при плазменной резке и как компонент газовой смеси при сварке аустенитной нержавеющей стали.

Водород – не имеет цвета, запаха и является горючим газом. Водород редко используют в в качестве защитного газа. Так как смеси водорода с воздухом или кислородом взрывоопасны, при работе с ним необходимо соблюдать правила пожарной безопасности и специальные правила техники безопасности. При работе с водородом необходимо следить за герметичностью всех соединений, т.к. он образовывает с воздухом взрывчатые смеси в широких пределах.

Смеси защитных газов

Иногда является целесообразным употребление газовых смесей. За счет добавок активных газов к инертным удается повысить устойчивость дуги, увеличить глубину проплавления, улучшить формирование шва, уменьшить разбрызгивание, повысить плотность металла шва, улучшить перенос металла в дуге, повысить производительность сварки. Существенное значение при выборе состава защитного газа имеют экономические соображения.

Смесь аргона и гелия. Газовые смеси гелий-аргон применяются в основном для сварки цветных металлов: алюминий, медь, никелевых и магниевых сплавов, а также химически активных металлов. Оптимальным является соотношение 35 – 40% аргона и 60 – 65% гелия. Так в полной мере реализуются преимущества обоих газов: аргон обеспечивает стабильность дуги, гелий – высокую глубину проплавления.

Смеси аргона с кислородом или углекислым газом. Благодаря добавке окислительных газов обеспечивается существенное снижение поверхностного натяжения жидкого металла расплавляемой электродной проволоки, уменьшение размеров образующихся и отрывающихся от электрода капель. Расширяется диапазон токов при сохранении стабильного ведения процесса сварки. Обеспечивается лучшее формирование металла шва и меньшее разбрызгивание, лучшая форма провара и меньшее излучение дуги, по сравнению со сваркой в чистом аргоне, а также в чистом углекислом газе. При добавлении кислорода наблюдается снижение критического тока, при котором крупнокапельный перенос металла переходит в мелкокапельный.

В таблице ниже приводятся основные характеристики газовых смесей для сварки МИГ/МАГ.

Выбираем сварочный защитный газ

Защитный газ играет наиважнейшую роль в процессе создания качественного сварного соединения для следующих видов сварки:

  • MIG – Metal Inert Gas. Метод дуговой сварки в защитной среде инертного газа с помощью плавящегося электрода в виде стальной или иной проволоки в зависимости от типа соединяемого металла.
  • MAG – Metal Active Gas. Так же, метод полуавтоматической сварки, но уже в среде активного газа.
  • TIG – Tungsten Inert Gas. Технология дуговой сварки в среде инертного газа неплавящимся электродом.

Зачем нужен защитный газ в сварке?

Сварочная ванна подвержена негативному влиянию кислорода из атмосферы, который может ослабить коррозионную стойкость шва, снизить его прочность и привести к образованию пор. Поток газа заключает сварочную ванну в защитную оболочку, предохраняя от вредного внешнего воздействия атмосферного воздуха, тем самым защищая затвердевающий расплавленный сварной шов от окисления, а также от содержащихся в воздухе примесей и влаги.

Виды защитных газов.

Инертные. Вид газов, которые химически не взаимодействуют с нагретым металлом и не растворяются в нем. Предназначены для сварки алюминия, магния, сварки титана и их сплавов, склонных при нагреве к энергичному взаимодействию с кислородом, азотом и водородом.

Пример: Аргон, Гелий, Азот (только при сварке меди и медных сплавов).

Активные. Вступают в химическое взаимодействие со свариваемым металлом и растворяются в нем.

Пример: Углекислый Газ, Водород, Кислород, Азот.

Основные сварочные газы:

Бесцветный, неядовитый, взрывобезопасный газ без вкуса и запаха. Обычно используются для аргонодуговой TIG сварки для всех материалов и MIG сварки цветных металлов, например алюминий. Аргон химически инертен, что делает его пригодным для сварки химически активных и тугоплавких металлов.
Этот газ имеет низкую теплопроводность и потенциал ионизации, что приводит к низкой передаче тепла на внешнюю область сварочной дуги. В результате формируется узкий столб дуги, который в свою очередь, создает традиционный для сварки в чистом аргоне профиль сварочного шва: глубокий и относительно узкий.

Легче воздуха, без запаха, цвета, вкуса, не ядовит. Является одноатомным инертным газом. Чаще всего используется для аргонодуговой TIG сварки цветных металлов и для сварки в потолочном положении. Имеет высокую проводимость тепла и потенциал ионизации. При сварке гелием профиль сварочного шва получается широким, хорошо смочен по краю и с довольно высоким тепловложением. Благодаря этим особенностям его чаще всего используется в качестве добавок к аргону и применяется для сваривания химически чистых или активных металлов, алюминиевых или магниевых сплавов, для обеспечения большой глубины проплавления.

Углекислый газ обеспечивает довольно глубокое проплавление, поэтому популярен при сварке толстого металла.

К недостаткам сварки в среде углекислого газа относится менее стабильная сварочная дуга, приводящая к большому образованию брызг. Также его возможна работа только на короткой дуге. Обычно используется для полуавтоматической MAG сварки короткой дугой и MAG сварки порошковой проволокой.

Сварочные газы, используемые как компоненты сварочной смеси газов:

Смеси газов имеют более высокие технологические показатели, чем чистые газы. При применении их в сварочном процессе мы получаем: мелкокапельный перенос жидкого металла, формирование качественного шва, уменьшение потерь на разбрызгивание.

Кислород – двухатомный, активный защитный газ. Обычно используется для MIG MAG сварки как один из компонентов сварочной смеси, в концентрации менее 10%.

Кислород обеспечивает очень широкий профиль сварочного шва с неглубоким проплавлением и высокое тепловложение на поверхности металла. Кислородо-аргонные смеси обладают характерным профилем проплавления сварочного шва в виде «шляпки гвоздя». Кислород также используется в тройных смесях с СО2 и аргоном, где он обеспечивает хорошую смачиваемость и преимущества струйного переноса.

Водород – двухатомный, активный газ. Применяется при сварке аустенитной нержавеющей стали для удаления оксида и повышения тепловложения. В результате получается широкий сварочный шов с увеличенным проплавлением.

Концентрация в сварочной смеси обычно не более 10%, а при плазменной резке нержавеющей стали от 30 до 40%.

Азот используется реже всего для защитных целей сварочной ванны. Он, в основном, используется для того, чтобы повысить коррозионную стойкость в дуплексных сталях.

Сварочные смеси газов – выбираем защитную среду для дуговой сварки

Сварщики часто недооценивают вклад защитной среды в процесс сварки. Некоторые чистые газы и сварочные смеси газов могут влиять на перенос металла, состав сплава, форму шва, дымообразование и множество других характеристик. Правильный выбор защитного газа для электродуговой сварки (MAG), дуговой сварки с флюсом (FCAW) и дуговой сварки вольфрамовым электродом (TIG) может существенно повысить интенсивность процесса, улучшить качество и скорость осаждения для данной сварной конструкции.

Влияние чистых газов на качество и производительность

Чистые газы, применяемые в сварочном деле, – это аргон, гелий и двуокись углерода. Они могут оказывать как положительное, так и отрицательное воздействие на дугу.

Сварка с применением аргона

Аргон (Ar) – одноатомный химический элемент, который широко используется в чистом виде и в составе многих сварочных смесей газов. Аргон абсолютно инертен, что делает его подходящим для работы с тугоплавкими и химически активными материалами. Он обладает низкой теплопроводностью и потенциалом ионизации, тем самым обеспечивая низкую теплопередачу в среду, окружающую дугу. Это создаёт узкий столб дуги, что, в свою очередь, вытекает в обычный для аргона профиль проникновения – глубокий и сравнительно узкий. В процессе работы с аргоном существует небольшая тенденция к подрезам в зоне сплавления и увеличению сварного шва, что связано с недостатком тепла на внешних гранях сварочной ванны как в TIG, так и в MAG. В MAG чистый Ar способствует струйному переносу металла.

Больше об особенностях данного газа читайте в статье: газ аргон – химические свойства и сфера применения.

Гелий (He) – одноатомный инертный газ, чаще всего используемый для сварки цветных металлов неплавящимся электродом. В отличие от аргона, гелий обладает высокой проводимостью и потенциалом ионизации, что способствует получению противоположных результатов. Гелий даёт широкий профиль, хорошее смачивание на краях шва и более высокие температуры, чем чистый Ar. Высокий потенциал ионизации может создать трудности в возбуждении дуги, за исключением тех случаев, когда для работы с вольфрамовым электродом используется высокочастотный или емкостной способы возбуждения дуги. Помимо этого, рекомендуется больший расход газа, поскольку гелий имеет тенденцию подниматься в воздухе. Чистый гелий способствует крупнокапельному переносу электродного материала и редко используется для GMAW, за исключением чистой меди.

Двуокись углерода (CO2) – двухкомпонентный газ, который используется в MAG и FCAW. CO2 является составной молекулой с довольно непростым взаимодействием в дуге. При температурах, появляющихся в дуге, двуокись углерода распадается на CO и O2. Это создаёт потенциал для окисления базового материала и распада сплава сварочной ванны или шва. Воссоединение CO/O2 даёт довольно широкий профиль проникновения у поверхности шва, в то время как низкий уровень потенциала ионизации и теплопроводности создаёт горячую область в центре столба дуги. Это даёт всему шву хорошо сбалансированный в отношении ширина-к-глубине профиль проникновения. В случае применения электродуговой сварки чистая углекислота не может создать струйный перенос металла, а только крупнокапельный, что может привести к большому количеству брызг.

Чем дополняются сварочные смеси газов

Кислород (O2) – двухатомный активный компонент, обычно используемый в газовых смесях для электродугового сварочного процесса в концентрациях ниже 10%. Кислород имеет потенциал подводимого тепла, возникающий как из энергии ионизации, так и из его энергии диссоциации (энергии, высвобождаемой путём расщепления молекулы на отдельные атомы в дуге).

На рисунке название химического элемента и его свойства

Кислород создаёт очень широкий и сравнительно мелкий профиль проникновения с высоким уровнем подводимого тепла у поверхности. Поскольку высокий уровень тепла снижает поверхностное натяжение расплавленного металла, облегчается струйный перенос, равно как и увлажнение у шва, расположенного у кромки наружной поверхности шва. Смеси O2/Ar демонстрируют профиль проникновения на уровне «шляпки гвоздя» при электрической дуговой сварке углеродистой стали, что является наиболее распространённым применением. O2 также используется в тримиксах с CO2 и Ar, где он дает преимущества в виде смачивания и струйного переноса металла.

Водород (H2) – двухатомный активный газ, который часто применяется в защитных сварочных смесях в концентрациях менее 10%. Водород в основном используется в аустенитных нержавеющих сталях для того, чтобы облегчить устранение оксидов или увеличить подвод тепла. Как и со всеми двухатомными молекулами, результатом становится более горячий, широкий сварной шов. Для работы с ферритными или мартенситными сталями водород не подходит из-за проблем с растрескиванием. При более высоких концентрациях (30-40%) H2 может использоваться для плазменной резки нержавеющих сталей с целью увеличения мощности и снижения окалины.

Азот (N2) – наименее часто используемая добавка для защитных целей. Азот в основном применяется для производства аустенита и для повышения сопротивлению коррозии в дуплексных и супер-дуплексных сталях. Для более детального ознакомления с данным химическим элементом читайте статью: технический азот и его востребованность в промышленной сфере.

Выбор защитного газа для конкретного типа сварки

В сварочном деле используются разные газовые смеси, выбор которых зависит от применяемой технологии и материала.

MAG: углеродистая сталь

Наиболее часто используемые смеси для данного материала – это Ar/CO2, Ar/O2 или все три компонента вместе.

На рисунке представлен пример cварочного полуавтомата фирмы Kaiser

• В Ar/CO2 содержание CO2 варьируется от 5% до 25%. Составы с низким содержанием двуокиси углерода обычно используются для струйного переноса металла на материалах большого сечения, или когда требуются низкие подводимые температуры и мелкое проникновение в тонких материалах. Высокое содержание делает возможной работу в режиме короткого замыкания и дает дополнительное очищающее действие и глубокое проникновение в материалах большого сечения. Однако, увеличение содержания углекислоты также означает повышенную скорость расходования легирующих элементов.

• В смесях Ar/O2, содержание O2 варьируется от 2% до 5%. Такая защитная среда обычно используется при работе на достаточно чистых материалах. Многие производители конструкционных сталей используют Ar/O2 потому, что такой состав защитного газа позволяет работать на слегка окисленных базовых материалах. Среды с содержанием кислорода должны оцениваться на предмет потенциала истощения, который может быть значительным при больших концентрациях.

• Содержание O2 и CO2 в тримиксах находится в пределах от 2% до 8%. Составы такого типа хорошо работают как при струйном переносе, так и при переносе в режиме короткого замыкания, и могут быть использованы в работе с материалами разной толщины. Кислород имеет склонность способствовать струйному переносу металла при низких напряжениях, в то время как двуокись углерода способствует проникновению. Тримиксы, содержащие Ar, CO2 и O2, делают возможным производить перенос металла при более низких напряжениях, чем многие двухкомпонентные смеси Ar/CO2.

MAG: углеродистая сталь

Наиболее распространёнными газами для работы с нержавеющей сталью являются Ar/CO2 и He/Ar/CO2.

На рисунке изображена схема классификации сталей

• Смеси Ar/CO2 обычно имеют около 2% кислорода и показывают хорошие результаты при струйном переносе металла, если допускается небольшое обесцвечивание шва.

• Тримиксы доступны в двух основных типах: насыщенные Ar и насыщенные He. Насыщенные гелием (около 90%) тримиксыиспользуются для работы в режиме короткого замыкания. Они включают небольшое количество аргона для стабилизации дуги и очень небольшое количество углекислоты для проникновения и очистки. Насыщенные аргоном газы обычно имеют около 80% Ar, 1-2% CO2, и He в остатке. Они традиционно используются для струйного переноса металла, поскольку высокое содержание аргона позволяет выполнять такой процесс при сравнительно низких напряжениях, в то время как гелий дает хорошую смачиваемость, плоский профиль шва, и хорошее цветовое соответствие.

Электрическая дуговая сварка алюминия обычно выполняется с чистым аргоном. Однако, при работе с сечениями большого размера возможно увеличение содержания гелия до 75%. Гелий делает возможными значительно лучшую смачиваемость по сравнение с чистым аргоном и более жидкую сварочную ванну, что даёт больше времени на выход примесей, вызывающих пористость. Более высокие концентрации гелия требуют значительно более высокого напряжения для струйного переноса металла, чем в случае с чистым Ar.

Также вы можете посмотреть небольшое видео о сварке тонкого алюминия методом TIG:

Кстати, больше публикаций о сварочных смесях Вы найдете в этом разделе нашего блога.

FCAW: углеродистая и нержавеющая сталь

Флюсовая технология наиболее часто выполняется в защитной среде, состоящей из 20-25% двуокиси углерода и уравновешенной аргоном. Такой состав даёт возможность получить хорошие технические характеристики дуги: CO2 улучшает проникновение и даёт хорошие показатели формирования окалины, в то время как Ar снижает выделение побочных газов. Иногда часть углекислоты заменяется гелием для того, чтобы ещё больше снизить газовыделение. Истощение сплава не является поводом для беспокойства при работе с флюсом, поскольку элементы, подверженные эффектам двуокиси углерода, уравновешиваются содержанием потока при производстве сварочной проволоки.

TIG: нержавейка и алюминий

В то время как в большинстве случаев для сварочного процесса с вольфрамовым электродом используется чистый аргон, некоторые смеси разработаны для того, чтобы упростить проникновение и смачиваемость в алюминии и нержавейке. Большинство из них являются смесями Ar/He, с содержанием гелия от 10% до 75%. Как и в случае с электродуговой сваркой, это добавление гелия облегчает смачиваемость в крупносортном алюминии и нержавеющей стали, в которых малая подвижность сварочной ванны является нежелательной. Для нержавеющей стали 300 серии возможно применение газа, содержащего от 2% до 5% водорода. Такая добавка делает готовый шов гораздо лучше на вид.

В компании «Промтехгаз» можно купить защитные сварочные смеси газов по приемлемой цене и с возможность оперативной доставки на производственный объект.

Защитные газы для сварки

Основное назначение защитных газов при сварке — заключение сварочной ванны в защитную оболочку для предохранения от вредного внешнего воздействия атмосферного воздуха. Защитные сварочные газы бывают активными, инертными или смесью активных с инертными (инертных с инертными) газов.

Инертные газы не входят во взаимодействие с металлами, а также не растворяются в них. При сваривании активных металлов (титан, алюминий и др.) в инертных газах используются гелий, аргон, аргоно-геливые смеси, азот (для сварки меди). Применение инертных газов при сварке хромоникелевых сталей позволяет получить высококачественный сварной шов.

Аргон – бесцветный, неядовитый, взрывобезопасный газ без вкуса и запаха. Аргон в полтора раза тяжелее воздуха, поэтому сварка с применением этого газа должна производиться в проветриваемом помещении, чтобы избежать риска удушья рабочих.

По чистоте (отсутствию примесей) аргон выпускается высшего сорта, первого и второго, транспортируется в газообразном или жидком состоянии в баллонах объемом сорок литров, под давлением 15 МПа. Баллоны должны быть покрашены в серый цвет с зеленой полоской, и иметь надпись зеленого цвета. Расход аргона зависит от диаметра электрода и находится в пределах 100. 500 литров в час.

Гелий в химически чистом виде применяется редко ввиду его дороговизны. Чаще всего он используется в качестве добавок к аргону и применяется для сваривания химически чистых или активных металлов, алюминиевых или магниевых сплавов, для обеспечения большой глубины проплавления. Гелий легче воздуха, не имеет запаха, цвета, вкуса, не ядовит.

Гелий выпускается трех видов (А, Б, В), транспортировка производится в коричневых баллонах с белой надписью. Расход гелия составляет 200. 900 литров в час; ввиду того, что он легко улетучивается, для хорошей защиты металлургического процесса сварки приходится увеличивать расход газа.

Азот является инертным при сварке, резке и наплавке меди, для сварки стали он является вредным. Азот выпускается четырех сортов: высшего, первого, второго и третьего. Газ также бесцветный, без запаха, вкуса, не ядовит и невзрывоопасен. Транспортируется в газообразном состоянии в баллонах.

Из активных газов наиболее часто используется углекислый газ и его смесь с аргоном . Углекислый газ обладает кисловатым запахом, не ядовит, бесцветен и тяжелее воздуха. Его промышленная чистота зависит от наличия паров воды (высший и первый сорт). Транспортируется в сжиженном виде в баллонах, окрашенных черной краской с надписью желтого цвета. Перед использованием баллоны ставят открытым вентилем вниз для удаления паров воды.

Углекислый газ в сварочной ванне распадается на кислород и оксид углерода. Кислород окисляет расплавленный металл и приводит к пористости шва. Для снижения этого негативного явления используют электроды с повышенным содержанием марганца и кремния, действующих как раскислители.

Смеси газов зачастую имеют более высокие технологические показатели, чем химически чистые газы. В производстве сварочных работ наибольшее применение нашли смеси углекислого газа с кислородом, гелия с аргоном, аргона с углекислым газом. Первая смесь позволяет получить мелкокапельный перенос жидкого металла, формирует качественный шов и уменьшает потери на разбрызгивание.

Смесь гелия с аргоном увеличивает производительность при сваривании алюминия, увеличивает глубину проплавления, улучшает качество шва. Смесь углекислого газа и аргона (12% и 88% соответственно) стабилизирует электрическую дугу, снижает разбрызгивание и поверхностное натяжение металла электрода, улучшая структуру шва.

Применение защитных газов при сварке улучшает качество соединений, позволяет варьировать широким диапазоном сварочных режимов, увеличивает номенклатуру свариваемых металлов.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Сварка в защитных газах: понятие и виды

Сварочный газ — что это такое? В это понятие входят все газы, применяемые при сварке. Сварочный газ – это как защитные газы, предохраняющие металл сварочной ванны от контакта с кислородом воздуха, так и активный газ для газовой сварки.

Область применения для полуавтоматов

При электродуговой сварке полуавтоматическим аппаратом облако защитного газа необходимо предотвратить контакт расплавленного металла в сварочной ванне с кислородом, азотом и водяными парами, содержащимися в атмосферном воздухе. Такой контакт приводит к образованию окислов и других нежелательных соединений, ухудшающих качество шва, ведущих к образованию пористости, трещин и других дефектов. Облако защитного газа вытесняет воздух из рабочей зоны и надежно закрывает ее. Газ необходимо постоянно подавать в рабочую зону.

Электродуговая сварка в облаке защитных газов используется для практически всех металлов и их сплавов — от черных до цветных, легких, таких как алюминий или магний, и редкоземельных.

Такую технологию используют как на промышленных предприятиях, в полуавтоматических и автоматических агрегатах, так и в небольших ремонтных мастерских. В последнее время оборудование стало доступно и домашним мастерам.

Сущность процесса

Что такое сварка в защитных газах? Для нее необходимо следующее оборудование:

  • сварочный полуавтомат;
  • баллон с газом;
  • сварочная горелка;
  • шланг для подачи газа, объединенный с электрическим кабелем и системой охлаждения горелки.

Может применяться и другое вспомогательное оборудование.

В качестве источника тока для сварки, выполняемой в среде защитных газов можно использовать как устаревший сварочный выпрямитель, так и современный инвертор. В составе аппарата смонтирован механизм подачи сварочной проволоки, служащей присадочным материалом.

Электродом служит сварочная проволока, на которую подается напряжение. Между ее кончиком и металлом заготовки разжигается электродуга. Ее тепло плавит металл, образуется сварочная ванна. Через сопло горелки подается защитный газ, закрывающий рабочую зону от контакта с кислородом, азотом и водяными парами воздуха.

При перемещении горелки сварочная ванна перемещается вслед за дугой, расплавленный металл, остывая и кристаллизуясь, формирует шов. Производительность процесса в несколько раз перекрывает общемашиностроительные укрупненные нормативы времени, отведенные на ручную дуговую сварку.

Какой газ нужен?

Какой газ и газовые смеси используются в полуавтоматической сварке?

Газ, используемый в качестве защиты, должен быть тяжелее воздуха и сам обладать минимальной химической активностью. Идеальным вариантом являются газообразные инертные элементы, полностью неактивные. Применяются следующие чистые газы:

  • Гелий. Применяется для электродуговой сварки цветных металлов, отличающихся высокой активностью, особенно в нагретом состоянии. Цена гелия высока.
  • Аргон. Применяется для соединения некоторых цветных металлов и стальных сплавов, включая высоколегированные и нержавеющие. Более доступен по цене, чем гелий.
  • Углекислый газ. Не является инертным, но характеризуется низкой химической активностью по отношению к металлам. Широко используется для соединения черных металлов и низколегированных сталей, весьма доступен по цене.

В качестве составляющих газовых смесей применяются:

  • Кислород, в небольших количествах добавляется в аргонные и углекислые смеси для улучшения проплавляемости шва.
  • Водород, используется в качестве раскислителя (химического восстановителя) при работе с аустенитными нержавеющими сталями.
  • Азот, добавляется для повышения устойчивости к коррозии в дуплексных стальных сплавах.

При работе со специальными сталями могут использоваться и другие компоненты смесей.

Газовый состав

При подготовке газовых смесей требуется точно соблюдать нормирование пропорций. Даже малое нарушение заданного состава может привести к значительному изменению свойств и к появлению брака.

Наиболее часто используются такие смеси, как:

  • К2: Ar 82% CO2 18%;
  • К3.1: Ar 92%, CO2 6% O2 2%;
  • К3.2: Ar 86%, CO2 12% O2 2%;
  • К3.3: Ar 78%, CO2 20% CO2 2%;
  • НП1: He 85%, Ar 13% CO2 1,5%;
  • НП3: He 38%, Ar 60% CO2 2%;
  • НП2: He 55%, Ar 43% CO2 2%.

Параметры защитных газов для сварочных работ.

Для чего нужны защитные газы при сварке и резке?

В ходе сварочных работ металл нагревается до температуры плавления. В таком состоянии он подвержен влиянию кислорода, азота и водных паров, содержащихся в воздухе. В результате контакта образуются нежелательные химические соединения, ухудшающие прочность и долговечность шва, ведущие к появлению дефектов. Облако защитного газа предотвращает этот контакт и сохраняет высокое качество шва.

Критерии выбора

Защитный газ подбирается исходя из следующих критериев:

  • свариваемые материалы;
  • толщина заготовок;
  • выбранная технология сварки.

Кроме того, обязательно учитывается химическая чистота компонентов смеси и максимальное содержание водяных паров в них.

[stextbox промышленных предприятий предпочитают приобретать готовые смеси у специализирующихся на их производстве поставщиков.[/stextbox]

Технология работ

Технология работ мало зависит от того, какая смесь будет применена. Неизменными сохраняются и сварочные режимы.

Сварочные режимы.

Особе внимание следует уделять соблюдению правил техники безопасности. Необходимо проверить электрооборудование, баллоны, арматуру, шланги. Защитная смесь подается в рабочую область за 10-15 секунд до поджига дуги, чтобы он успел вытеснить воздух и сформировать защитное облако. По окончании шва недопустимо резкое прекращение подачи газа, он должен подаваться еще 10-15 секунд, чтобы конец шва успел остыть и кристаллизоваться под газовой защитой.

Особенности выполнения

Для разогрева заготовки и оплавления кромок применяется тепло сгорания пропана или ацетилена. При сварке различных материалов существуют свои нюансы:

  • обычная конструкционная сталь сваривается практически любым газом, для присадочного материала используют низкоуглеродистую проволоку;
  • нержавейка требует газов с высокой теплоотдачей и проволоки, легированной Mo, Ni или Cr;
  • меди нужно пламя особо большой мощности;
  • сваривание латуни осложняется выгоранием легкоплавкого цинка, поэтому в проволоке его должно быть больше, чем в заготовках;
  • бронзу сваривают восстановительным пламенем, в присадке повышено содержание кремния в качестве раскислителя.

[stextbox всех металлов необходимо соблюдать баланс между глубоким проплавлением кромок и возможным пережогом.[/stextbox]

Преимущества

Технология имеет следующие достоинства:

  • дешевизна оборудования;
  • легкость регулировки мощности горелки и прогрева заготовки;
  • нет необходимости в электроснабжении.

Схема работы газовой горелки.

К недостаткам технологии относят:

  • медленный разогрем заготовки;
  • большие энергетические потери;
  • трудности автоматизации.

Сложно также проваривать газом заготовки большой толщины. Пропан и ацетилен, используемые для работы, огнеопасны и требуют строго соблюдения требований по безопасностию

Самые востребованные способы

Сварка газовая наиболее часто использует следующие разновидности технологии:

Левая

Не требует высокой квалификации. Применяется для сварки заготовок малой толщины и с низкой температурой плавления.

Правая

Применяется для сплавов с высоким коэффициентом теплопроводности и для заготовок от 3 до 16 миллиметров. Вследствие защитного действия факела горелки качество шва повышается.

С использованием сквозного валика

Метод подразумевает движение факела от расплавления верхней кромки к нижней с накладываем на него слоя металла.

С помощью ванночек

Используется для соединения тонколистовых заготовок. Заключает в последовательном создании миниатюрных сварочных ванн по линии шва. Края ванн перекрываются друг с другом, создавая непрерывную линию шва.

Популярные технологии газовой сварки.

Многослойная

Используется для создания особо ответственных соединений большой толщины. Требует тщательной разделки кромок. Характеризуется высоким расходом сварочных газов. Каждый следующий проход уплотняет шовный материал, образованный при предыдущих проходах.

Сварка окислительным пламенем и раскислением

Применяется при сварке заготовок из сталей с низким содержанием углерода. Чтобы противостоять окислительному действию пламени, используют присадочный материал с высоким содержанием Mn и Si, выступающего в роли восстановителя.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий