Кто изобрел лампочку Яблочков

Свет и жизнь Павла Яблочкова

31 марта 1894 года, 125 лет назад, ушел из жизни Павел Николаевич Яблочков, известный русский ученый и предприниматель. Именно он изобрел знаменитую «свечу Яблочкова» — дуговую лампу, которая впервые была представлена на Всемирной выставке в Париже в 1878 году.

Жизнь и деятельность Павла Николаевича Яблочкова пришлась на очень значимый с точки зрения научно-технического прогресса период в отечественной и мировой истории. Именно вторая половина XIX века стала тем периодом, когда технический прогресс набрал невиданные обороты и, что самое главное, стал чувствоваться и в быту, в повседневной жизни людей. В частности, города впервые начали освещаться электричеством, и герой нашей статьи сыграл в этом деле одну из очень важных ролей.

Но сначала расскажем немного о жизненном пути изобретателя. Павел Николаевич Яблочков прожил короткую жизнь – всего 46 лет. Но успел он за нее очень многое. Яблочков родился 2 (14) сентября 1847 года в деревне Яблочково (Жадовка) Сердобского уезда Саратовской губернии. Его отец Николай Павлович Яблочков, обедневший мелкий помещик, в юные годы учился в Морском кадетском корпусе, но по состоянию здоровья был со службы уволен и получил гражданский чин губернского секретаря – один из самых младших в Табели о рангах. Мать будущего ученого, Елизавета Петровна, занималась ведением хозяйства.

Яблочковы были людьми образованными и стремились дать хорошее образование и сыну. В 1858 году 11-летнего Павла отец отвез в Саратов, в мужскую гимназию. Хорошо развитого мальчика зачислили сразу во второй класс гимназии, но уже в 1865 году Николай Яблочков забрал сына – пятиклассника из гимназии. Это решение было связано с тяжелым финансовым положением семьи – при всем желании Николай Павлович не мог обеспечить сыну дальнейшее гимназическое образование.

Поэтому решили определить Павла в Николаевское инженерное училище, но для этого требовалась предварительная подготовка – и Павел получил ее в частном подготовительном пансионе Цезаря Антоновича Кюна. Именно этот человек сыграл важнейшую роль в профессиональном выборе Павла Яблочкова, по сути став его первым наставником в инженерно-технических дисциплинах. Павел Николаевич Яблочков до конца своих дней сохранил трепетное отношение к первому учителю и всю жизнь продолжал с ним общаться.

30 сентября 1863 года 16-летний Павел был зачислен в Николаевское инженерное училище. Он приступил к занятиям в младшем кондукторском классе. Начались суровые будни и не менее сложная учеба. В августе 1866 года Павел Яблочков окончил Николаевское инженерное училище по первому разряду и получил чин инженер-подпоручика. Так началась непродолжительная военная карьера Павла Яблочкова. Он был распределен младшим офицером в 5-й саперный батальон, расквартированный в Киевской крепости. Для отца, Николая Яблочкова, военная карьера сына была очень желанной. Он хотел видеть Павла офицером, реализовавшим его собственные несостоявшиеся мечты о военной службе.

Но самого Павла Яблочкова, стремившегося к научной и изобретательской деятельности, армейская служба тяготила. Есть прирожденные военные, есть те, кто втягивается и служит добросовестно, но Яблочков к ним не относился. Он прослужил в саперном батальоне чуть больше года и принял решение уйти из армии. Сославшись на проблемы со здоровьем, Павел Яблочков уволился с военной службы в чине поручика.

Тем не менее, поддавшись настояниям родителей, Павел вернулся на военную службу в январе 1869 года. На этот раз командование учло склонности и пожелания молодого офицера. Павел Яблочков получил назначение в Техническое гальваническое заведение в Кронштадте – единственное в Российской империи, где готовили военных специалистов по электротехнике. В Кронштадте Яблочков погрузился в изучение электрического тока, особенностей его применения для военных нужд, прежде всего – в минном деле.

Прослушав восьмимесячный курс Гальванического заведения, Павел Яблочков был назначен начальником гальванической команды в тот же 5-й саперный батальон, где он начинал службу. Но и с новой специальностью армейская карьера по-прежнему не прельщала молодого человека. Поэтому, как только истек трехлетний срок, 1 сентября 1872 года Павел Яблочков уволился со службы – на этот раз уже навсегда.

Судя по всему, Павел Яблочков прекрасно понимал, что военная служба требует полного погружения, будет препятствовать его изыскательской деятельности, тогда как «на гражданке» он рассчитывал совмещать работу и изобретательство. Уволившись из армии, Павел Яблочков устроился начальником службы телеграфа Московско-Курской железной дороги и практически сразу же сделал первое изобретение – черно-пишущий телеграфный аппарат, о котором, к сожалению, практически ничего неизвестно.

Параллельно со службой на железной дороге, Яблочков активно участвовал в деятельности кружка электриков-изобретателей при Московском политехническом музее. Здесь он впервые и задумался о тех богатых возможностях, которые электричество дает для освещения улиц и помещений. Изучив опыты Александра Николаевича Лодыгина в сфере электрического освещения, Яблочков стал работать над усовершенствованием дуговых ламп.

Первым делом Яблочков обратился к совершенствованию регулятора Фуко – сложного механизма, действовавшего с помощью трех пружин. Павел Яблочков стоял на передней площадке паровоза, менял угли, подкручивал регулятор, а затем перетаскивал оборудование на другой паровоз. Опыт оказался удачным, но Яблочков понял, что такой метод слишком трудоемкий, сложный и поэтому никогда не получит широкого распространения.

В 1874 году Павел Яблочков уволился со службы на телеграфе и вплотную занялся изобретательством, открыв в Москве мастерскую физических приборов. В мастерской проводились опыты по освещению большой площади с помощью прожектора, по усовершенствованию динамо-машины. Именно в это время Яблочков создал электромагнит, поставив обмотку из медной ленты на ребро по отношению к сердечнику. Но больше всего Яблочкова интересовало усовершенствование дуговых ламп.

Ближайшим соратником Павла Николаевича стал электротехник Н.Г. Глухов, с которым Яблочков занимался и опытами по электролизу растворов поваренной соли. В 1875 году, проводя опыты по электролизу, Яблочков увидел, что параллельно расположенные угли, погруженные в электролитическую ванну, случайно коснулись друг друга и между ними вспыхнула электрическая дуга, которая сразу осветила лабораторию. Эта случайность стала тем импульсом, который подтолкнул Павла Яблочкова к идее создания более совершенной дуговой лампы, в которой отсутствовал бы регулятор межэлектронного расстояния.

В 1875 году, отправив жену с детьми к своим родителям, Яблочков поехал за границу. Он планировал показать свое изобретение в США, но по определенным обстоятельствам оказался во Франции, в Париже, где встретился с академиком Луи Бреге, который предложил ему место в своей фирме. Именно в Париже Яблочков завершил работу над своим изобретением. Так появилась знаменитая «свеча Яблочкова», благодаря которой имя изобретателя и вошло в историю мировой электротехники.

Устройство «свечи» представляет собой два угольных блока 6 × 12 мм в сечении, которые разделены гипсом или каолином. На верхнем конце закреплена перемычка из тонкой проволоки или угольной пасты. Конструкция крепится вертикально на изолированном основании. При подключении свечи к источнику тока проволока сгорала, поджигая дугу. Пламя дуги, постепенно сжигая угли и испаряя изоляционный материал, ярко освещало помещение или площадь. Устройство получало переменный ток от генератора Грамма.

Если свеча отключалась от источника тока, то гасла и ее уже нельзя было запустить заново. Поэтому Яблочков продолжил работу над ее усовершенствованием. Он стал подмешивать к изоляционному материалу порошки различных металлов, поэтому при отключении тока и погасании свечи на торце изолирующей массы образовывалась металлическая полоска и при повторной подаче электричества свеча вновь зажигалась. Электродов хватало на полтора часа. Изобретение Яблочкова обладало несомненными преимуществами по сравнению с угольной лампой А.Н. Лодыгина.

15 апреля 1876 года в Лондоне началась выставка физических приборов. На ней была представлена и французская фирма Бреге, от которой на выставку приехал Павел Яблочков. Одновременно Яблочков был и отдельным участником выставки, представив на ней свое изобретение – свечу. На металлических постаментах он установил четыре свечи, обернутые в асбест. К светильникам был подведен ток от динамо-машины. Яблочков повернул рукоятку, включив ток, и просторный зал выставки был освещен очень ярким электрическим светом. Все присутствовавшие были поражены.

Эффект от демонстрации свечи превзошел все ожидания самого Яблочкова. Западная печать разразилась многочисленными статьями, повествующими о невиданном успехе в деле электрического освещения. Свет приходит к нам с Севера — из России» — подобными заголовками в те дни пестрели газеты Англии, Франции, Германии. Казалось бы, столь масштабное признание заслуг Яблочкова не должно было оставить равнодушным и российское государство, но на родине к изобретению Яблочкова первое время относились без должного внимания.

В результате, получив патент на изобретение, Яблочков уступил его французской компании, в которой продолжил работу начальником технического отдела. Свечи Яблочкова были запущены в массовое производство, которое достигло невероятных масштабов. Например, фирма Бреге выпускала 8 тысяч свечей в день. Одними из первых свечи купили фешенебельные магазины Лувра, а в мае 1877 года свечами осветили Avenue de l’Opera в Париже.

Вслед за Францией свечи Яблочкова получили распространение и в Великобритании. 17 июня 1877 года ими стали освещать Вест-Индские доки в Лондоне, затем – набережную Темзы, другие улицы и объекты. Вслед за Великобританией свечи Яблочкова загорелись в Германии и Италии, Швеции и Испании, даже в Португалии, Греции, Мексике, Бразилии, Британской Индии. В Россию свечи пришли позже – в октябре 1878 года они осветили казармы Кронштадтского учебного экипажа.

Свеча была далеко не единственным изобретением Павла Николаевича, облегчившим жизнь человечества. Так, Яблочков создал генератор переменного тока и трансформатор переменного тока, первым применил переменный ток в промышленных целях, использовал электромагнит с плоской обмоткой. Впервые в мире Яблочковым была разработана система дробления электрического света, позволявшая большому количеству свечей питаться от одного генератора тока.

В 1878 году Яблочков, поняв, что его деятельность наконец получила признание и в России, принял решение вернуться на родину. В Санкт-Петербурге была основана акционерная компания «Товарищество электрического освещения и изготовления электрических машин и аппаратов П. Н. Яблочков-изобретатель и Ко». Она занялась организацией электрического освещения в городах России – Санкт-Петербурге, Москве, Киеве, Гельсингфорсе, Архангельске и так далее.

Но все равно электрическое освещение из-за финансовых трудностей России не получило тогда в нашей стране такого распространения, как в Европе. И в 1880 году Яблочков вернулся в Париж. За участие в Международном конгрессе электриков в 1881 году он был награжден орденом Почетного легиона.

Не прекращал Павел Николаевич и химических опытов. Они, к сожалению, и стоили ему жизни. Во время опыта с хлором Яблочков сжег слизистую оболочку легких. Его состояние ухудшилось – у него опухли ноги, он стал часто задыхаться, кашлять. В 1892 году ученый вернулся в Россию, отдав все свое состояние за то, чтобы выкупить на Западе свои патенты. К этому времени он себя уже очень плохо чувствовал – перенес два инсульта, началась водянка, отказывали ноги.

19 (31) марта 1894 года в 6 часов утра Павел Николаевич Яблочков скончался. Изобретатель знаменитой свечи в буквальном смысле сгорел, отдав всю свою жизнь изобретениям и покинув этот мир всего в 46 лет. Интересно, что настоящее увековечение памяти Павла Николаевича происходило уже в советское время: именно в СССР в честь ученого были названы учебные заведения, улицы, а в 1947 г. была учреждена премия Яблочкова за достижения в электротехнике.

«Свет приходит к нам с севера — из России»

В этот день, 145 лет назад, 23 марта 1876 года, был оформлен патент на свечу Яблочкова. В прессе она получила название «русский свет» и «русское солнце» и широко разошлась по миру: от Санкт-Петербурга до Парижа. В честь юбилейной даты рассказываем, как проходила научная гонка среди изобретателей и как два русских ученых проиграли «королю патентов» из США.

В поисках идеальной лампочки

Полтора века назад на смену тусклому газовому освещению пришло электрическое. Как это часто бывает с научными прорывами, идея буквально витала в воздухе, когда за ее реализацию почти одновременно взялись три изобретателя: Павел Яблочков, Александр Лодыгин и Томас Эдисон. По красивому совпадению все они родились в один год — 1847-й.

Лодыгин экспериментировал с уже известными лампами накаливания, пытаясь продлить срок их службы за счет нового материала нити накаливания. В 1874 году он получил патент на свою лампу со светящимся угольным стержнем внутри прозрачного сосуда без доступа кислорода.

Павел Яблочков был вдохновлен опытами Лодыгина по освещению улиц и помещений в России: успешный пример ровесника заставил Павла Николаевича сосредоточиться на электрических лампах. В 1874 году он поучаствовал в освещении на железной дороге: впервые в истории на паровозе был установлен прожектор с дуговой лампой — регулятором Фуко. Это был правительственный поезд из Москвы в Крым. Яблочкову пришлось постоянно менять угли в приборе и подкручивать регулятор, а затем перетаскивать сложную технику с одного локомотива на другой — и так всю дорогу. После этой поездки молодой инженер решил, что нужен новый способ электрического освещения — без регулятора Фуко, который был очень сложным и требовал постоянного внимания.

Павел Яблочков, Александр Лодыгин и Томас Эдисон

К созданию свечи Яблочкова привели многочисленные и упорные опыты по электролизу, которые Павел Николаевич проводил в 1875 году. В одном из экспериментов угли, расположенные параллельно в электролитической ванной, случайно коснулись друг друга и на мгновение вспыхнули, осветив лабораторию. Яблочков решил, что будущее именно за электрической угольной дуговой лампой, и вплотную занялся прибором. Много времени ушло на выбор изолирующего вещества и получение подходящих углей. Что же представляла собой свеча Яблочкова? Очень простое и дешевое устройство: два стержня, разделенные изоляционной прокладкой из каолина, зажимались по отдельности в клемме подсвечника. На верхних концах возникал дуговой разряд, из-за чего пламя дуги ярко вспыхивало и горело, пока не сжигались угли.

Кстати, первую электрическую дугу получил в опыте и описал еще один русский ученый — физик Василий Петров. Еще в 1802 году он регистрировал пламя, когда пропускал ток по двум стержням из древесного угля. Прошло более 70 лет, прежде чем это открытие вылилось в действующий прибор и патент. 23 марта 1876 года стало вехой в истории развития светотехники и триумфом русского изобретателя.

О нем заговорили во Франции, Британии, США. Мировая пресса не жалела эпитетов, которые и сегодня приятно прочесть: «Россия — родина электричества», «Свет приходит к нам с севера — из России», «Северный свет, русский свет — чудо нашего времени» «Вы должны видеть свечу Яблочкова», «Изобретение русского отставного военного инженера Яблочкова — новая эра в технике».

Свеча Яблочкова имела преимущества перед угольной лампой Лодыгина. Она оказалась проще и дешевле: первые образцы разлетались по 20 коп. и служили полтора часа, после этого нужно было вставить в фонарь новую свечу. Со временем появилось ноу-хау: фонари с автоматической заменой свечей.

Промоушен изобретения — дело рук изобретателя

Павел Яблочков приложил немало усилий к популяризации своих свечей. Он не остался в Москве, где не нашлось поддержки его инновациям, а лично поехал в Париж и США, демонстрировал свою свечу на выставках (первый показ произошел в Лондоне в апреле 1876 года), знакомился с полезными людьми и всячески занимался продвижением ноу-хау. В итоге в Париже было налажено производство свечей русского изобретателя Яблочкова: их выпускали по 8000 штук ежедневно. В 1877 году «русским светом» осветились магазины Лувра, парижские улицы и ипподром, достопримечательности Лондона, улицы Европы, и только в конце 1878 года чудо дошло до России.

Первыми отечественными объектами, получившими освещение, стали казармы Кронштадтского учебного экипажа и площадь возле дома командира Кронштадтского морского порта. Кстати, тут есть интересная предыстория, которая много говорит о самом изобретателе. Еще до отъезда за границу он предлагал свой патент военному министерству России, причем абсолютно бесплатно. Но когда ответа не последовало, изобретатель перебрался в Париж и продал патент вместе с правами на производство свечей французским предпринимателям за миллион франков. Когда же один из великих князей заметил свечи Яблочкова на Парижской выставке в 1878 году и пообещал их продвижению в России, Павел Николаевич вернул миллион франков французам, забрал патент и переехал в Петербург, чтобы открыть производство и заняться электрификацией российских городов. Деньги ему были не так важны, как внедрение своей инновации на Родине.

Ипподром, освещенный свечами Яблочкова

Однако «русский свет», добравшийся в Европу, США, Индию и даже дворцы короля Камбоджи, пришелся по нраву далеко не всем. Категорически против были акционеры газовых компаний, ведь освещение на улицах до этого времени целиком зависело от газа. Мощные протесты лобби в Лондоне вынудили английский парламент учредить в 1879 году комиссию, которая решала, насколько допустимо широкое использование электрического освещения в Британской империи. У Яблочкова нашлось немало противников и один более удачливый соперник.

Вор патентов или талантливый изобретатель?

В США за экспериментами русских изобретателей пристально следил Томас Эдисон. Он вошел в историю не только как изобретатель, но и как «король патентов», поскольку успел за свою жизнь получить 1093 патента в США и 3000 в других странах мира. Кто-то даже называет его вором патентов — и не без основания.

Эдисон занялся усовершенствованием лампы накаливания и, незначительно изменив изобретение Лодыгина, запатентовал его под своим именем в 1879 году. Павел Яблочков в дальнейшем прямо заявлял, что Томас Эдисон украл у русских ученых их мысли, идеи и изобретения, но это ни к чему не привело. Главным «козырем» лампы Эдисона стала продолжительность ее работы — 40 часов. Чтобы добиться такого эффекта, американец провел около 1500 испытаний различных материалов, подходящих для нити накаливания электрической лампы. Он перепробовал около 6000 образцов материалов и потратил $100 000, пока не остановился на карбонизированном бамбуке. Эдисон был увлеченным трудоголиком: однажды он провел в лаборатории 45 часов без перерыва, изучая характеристики угольной цепи лампы. В среднем он трудился по 16–19 часов в сутки.

Научный метод Эдисона описал Никола Тесла: «Если бы Эдисону понадобилось найти иголку в стоге сена, он не стал бы терять времени на то, чтобы определить наиболее вероятное место ее нахождения. Он немедленно с лихорадочным прилежанием пчелы начал бы осматривать соломинку за соломинкой, пока не нашел бы предмет своих поисков. Его методы крайне неэффективны: он может затратить огромное количество времени и энергии и не достигнуть ничего, если только ему не поможет счастливая случайность».

Счастливая случайность, упорство и грамотный промоушен привели к тому, что изобретение Эдисона быстро вытеснило свечу конкурента. На Первой международной выставке электричества в Париже в 1881 году лампа Эдисона окончательно затмила ноу-хау Яблочкова, так как могла гореть 800–1000 часов, не требуя замены, ее можно было гасить и зажигать сколько угодно раз. После этого наступил триумф американского изобретателя, а у Яблочкова началась в жизни черная полоса, завершившаяся его ранним уходом в 46 лет.

Переключившись на химические источники тока, Павел Николаевич пострадал во время одного из опытов с хлором и сжег себе слизистую оболочку легких, после чего испытывал проблемы с дыханием. Взрыв натровой батареи в 1884 году чуть не лишил его жизни. А вскоре состояние ухудшилось: он пережил два инсульта, затем прибавилась водянка, опухали ноги. Предвидя скорый конец, ученый окончательно перебрался на Родину в 1892 году и привез свои заграничные патенты, заплатив за них 1 млн руб. Это были все его сбережения, но он хотел, чтобы его изобретения служили на благо России. Умер Яблочков в 1894 году. Так совпало, что похороны пришлись на 23 марта — день получения патента на свечу. На памятнике Яблочкову выбито его сбывшееся пророчество: «Электрический ток будет подаваться в дома как газ или вода».

Ровесники изобретателя Лодыгин и Эдисон дожили до глубокой старости — правда, американец пережил русского почти на десятилетие. Еще в 1880-е годы Лодыгин, переехавший в США, с удивлением узнал, что изобретенная им лампочка носит имя Эдисона, но доказывать свое первенство не стал, а принялся совершенствовать свое изобретение. В опытах с нитью из тугоплавких металлов в 1890-х годах он наконец-то нашел самый подходящий материал для лампы накаливания, который используется и в наши дни, — вольфрам. Вольфрамовая нить может служить тысячи часов, экономит электричество и светит ярче, чем ее предшественницы. Первые лампы с вольфрамовой спиралью производились по патенту Лодыгина.

«Русская свеча». Как инженер Яблочков подарил миру электрический свет

Весной 1876 года мировые СМИ пестрели заголовками: «Свет приходит к нам с Севера — из России»; «Северный свет, русский свет — чудо нашего времени»; «Россия — родина электричества».

На разных языках журналисты восхищались русским инженером Павлом Яблочковым, чьё изобретение, представленное на выставке в Лондоне, изменило представление о возможностях использования электричества.

Изобретателю в момент выдающегося триумфа было всего 29 лет.

Прирождённый изобретатель

Павел Яблочков родился 14 сентября 1847 года в Сердобском уезде Саратовской губернии, в семье обедневшего мелкопоместного дворянина, происходившего из старинного русского рода.

Отец Павла в молодости учился в Морском кадетском корпусе, но по болезни со службы был уволен с награждением гражданским чином XIV класса. Мать была властной женщиной, державшей в крепких руках не только хозяйство, но и всех членов семьи.

Паша ещё в детстве увлёкся конструированием. Одним из первых его изобретений стал оригинальный землемерный прибор, которым затем пользовались жители всех окрестных деревень.

В 1858 году Павел поступил в Саратовскую мужскую гимназию, однако из 5-го класса отец забрал его. Семья была стеснена в средствах, и на образование Павла их не хватало. Тем не менее мальчика удалось определить в частный Подготовительный пансионат, где молодых людей готовили к поступлению в Николаевское инженерное училище. Содержал его военный инженер Цезарь Антонович Кюи. Этот неординарный человек, одинаково успешно занимавшийся вопросами военной инженерии и написанием музыки, пробудил у Яблочкова интерес к науке.

В 1863 году Яблочков блестяще сдал вступительный экзамен в Николаевское инженерное училище. В августе 1866 года он окончил училище по первому разряду, получив чин инженер-подпоручика. Его назначили младшим офицером в 5-й сапёрный батальон, расквартированный в Киевской крепости.

Внимание, электричество!

Родители были счастливы, поскольку считали, что сын может сделать большую военную карьеру. Однако самого Павла эта стезя не прельщала, и спустя год он уволился со службы в чине поручика под предлогом болезни.

Яблочков проявляет большой интерес к электротехнике, однако знаний в этой области у него было недостаточно, и, чтобы устранить этот пробел, он вернулся на военную службу. Благодаря этому, у него появилась возможность поступить в Техническое гальваническое заведение в Кронштадте, единственную в России школу, готовившую военных электротехников.

После её окончания Яблочков отслужил положенные три года и в 1872 году вновь уволился из армии, теперь уже навсегда.

Новым местом работы Яблочкова стала Московско-Курская железная дорога, где он был назначен начальником службы телеграфа. Работу он совмещал с изобретательской деятельностью. Узнав об опытах Александра Лодыгина по освещению улиц и помещений электрическими лампами, Яблочков решил заняться усовершенствованием существовавших тогда дуговых ламп.

Как появился прожектор для поездов

Весной 1874 года по Московско-Курской дороге должен был проследовать правительственный состав. Руководство дороги задумало осветить путь поезду в ночное время при помощи электричества. Однако, как это сделать, чиновники не очень понимали. Тут вспомнили об увлечении начальника службы телеграфа и обратились к нему. Яблочков согласился с большой радостью.

На паровоз впервые в истории железнодорожного транспорта установили прожектор с дуговой лампой — регулятором Фуко. Прибор был ненадёжный, но Яблочков прикладывал все усилия, чтобы заставить его работать. Стоя на передней площадке паровоза, он менял угли в лампе и подкручивал регулятор. При смене паровозов Яблочков перемещался на новый вместе с прожектором.

Поезд успешно дошёл до места назначения, к радости руководства Яблочкова, но сам инженер решил — такой способ освещения слишком сложный и затратный и требует усовершенствования.

Яблочков уходит со службы на железной дороге и открывает в Москве мастерскую физических приборов, где проводятся многочисленные опыты с электричеством.

Русская идея воплотилась в жизнь в Париже

Главное изобретение в его жизни родилось во время опытов с электролизом поваренной соли. В 1875 году во время одного из опытов по электролизу параллельно расположенные угли, погружённые в электролитическую ванну, случайно коснулись друг друга. Тотчас между ними вспыхнула электрическая дуга, на короткий миг осветившая ярким светом стены лаборатории.

Инженеру пришла в голову мысль о том, что можно создать дуговую лампу без регулятора межэлектродного расстояния, которая будет значительно надёжнее.

Осенью 1875 года Яблочков намеревался со своими изобретениями отправиться на Всемирную выставку в Филадельфии, дабы продемонстрировать успехи российских инженеров на ниве электричества. Но дела мастерской шли неудачно, денег не хватало, и добраться Яблочков смог только до Парижа. Там он познакомился с академиком Бреге, владевшим мастерскими физических приборов. Оценив знания и опыт русского инженера, Бреге предложил ему работу. Яблочков принял приглашение.

Весной 1876 года ему удалось закончить работу по созданию дуговой лампы без регулятора. 23 марта 1876 года Павел Яблочков получил французский патент № 112024.

Лампа Яблочкова оказалась проще, удобнее и дешевле в эксплуатации, чем её предшественницы. Она представляла собой два стержня, разделённых изоляционной прокладкой из каолина. Каждый из стержней зажимался в отдельной клемме подсвечника. На верхних концах зажигался дуговой разряд, и пламя дуги ярко светило, постепенно сжигая угли и испаряя изоляционный материал.

Одним деньги, другим наука

15 апреля 1876 года в Лондоне открылась выставка физических приборов. Яблочков представлял и фирму Бреге, и одновременно выступал от своего имени. В один из дней выставки инженер представил свою лампу. Новый источник света произвёл настоящий фурор. За лампой прочно закрепилось название «свеча Яблочкова». Она оказалась чрезвычайно удобной в использовании. Фирмы по эксплуатации «свечей Яблочкова» стремительно открывались по всему миру.

Но невероятный успех не сделал русского инженера миллионером. Он занял скромный пост руководителя технического отдела французской «Генеральной компании электричества с патентами Яблочкова».

От получаемой прибыли ему доставался незначительный процент, но Яблочков не роптал — его вполне устраивало то, что он имел возможность продолжать научные исследования.

Тем временем «свечи Яблочкова» появились в продаже и начали расходиться в громадном количестве. Каждая свеча стоила примерно 20 копеек и горела около полутора часов; по истечении этого времени приходилось вставлять в фонарь новую свечу. Впоследствии были придуманы фонари с автоматической заменой свечей.

От Парижа до Камбоджи

В 1877 году «свечи Яблочкова» покорили Париж. Сначала они осветили Лувр, затем оперный театр, а затем одну из центральных улиц. Свет новинки был столь непривычно ярким, что парижане в первое время собирались, чтобы просто полюбоваться изобретением русского мастера. Вскоре «русское электричество» уже освещало и ипподром в Париже.

Успех «свечей Яблочкова» в Лондоне заставил местных бизнесменов попытаться добиться их запрета. Дискуссия в английском парламенте растянулась на несколько лет, а «свечи Яблочкова» продолжали успешно работать.

«Свечи» покорили Германию, Бельгию, Испанию, Португалию, Швецию, в Риме ими освещали развалины Колизея. К концу 1878 года лучшие магазины Филадельфии, города, в который Яблочков так и не попал на Всемирную выставку, также осветили его «свечи».

Подобными лампами осветили свои покои даже шах Персии и король Камбоджи.

В России первая проба электрического освещения по системе Яблочкова была проведена 11 октября 1878 года. В этот день были освещены казармы Кронштадтского учебного экипажа и площадь у дома, занимаемого командиром Кронштадтского морского порта. Спустя две недели, 4 декабря 1878 года, «свечи Яблочкова» впервые осветили Большой (Каменный) театр в Петербурге.

Все изобретения Яблочков вернул России

Заслуги Яблочкова получили признание и в научном мире. 21 апреля 1876 года Яблочкова избрали в действительные члены Французского физического общества. 14 апреля 1879 года учёного наградили именной медалью императорского Русского технического общества.

В 1881 году в Париже открылась первая Международная электротехническая выставка. На ней изобретения Яблочкова получили высокую оценку и были признаны постановлением Международного жюри вне конкурса. Однако выставка же стала свидетельством того, что время «свечи Яблочкова» уходит — в Париже была представлена лампа накаливания, которая могла гореть 800–1000 часов без замены.

Яблочкова это нисколько не смутило. Он переключился на создание мощного и экономичного химического источника тока. Опыты в этом направлении были весьма опасными — эксперименты с хлором обернулись для учёного ожогом слизистой оболочки лёгких. У Яблочкова начались проблемы со здоровьем.

Ещё около десяти лет он продолжал жить и работать, курсируя между Европой и Россией. Наконец, в 1892 году он вместе с семьёй возвращается на Родину окончательно. Желая, чтобы все изобретения стали собственностью России, он практически всё своё состояние потратил на выкуп патентов.

Гордость нации

Но в Петербурге об учёном успели забыть. Яблочков уехал в Саратовскую губернию, где намеревался в деревенской тиши продолжить научные исследования. Но тут Павел Николаевич быстро понял, что условий в деревне для подобных работ просто нет. Тогда он отправился в Саратов, где, живя в гостиничном номере, занялся составлением плана электрического освещения города.

Здоровье, подорванное опасными опытами, продолжало ухудшаться. Помимо проблем с дыханием, беспокоили боли в сердце, опухали и совсем отказывали ноги.

Около 6 часов утра 31 марта 1894 года Павла Николаевича Яблочкова не стало. Изобретатель ушёл из жизни в возрасте 46 лет. Его похоронили на окраине села Сапожок в ограде Михайло-Архангельской церкви в фамильном склепе.

В отличие от многих деятелей дореволюционной России, имя Павла Яблочкова почиталось и в советские времена. В честь него были названы улицы в различных городах страны, включая Москву и Ленинград. В 1947 году была учреждена премия Яблочкова за лучшую работу по электротехнике, которая присуждается 1 раз в три года. А в 1970 году в честь Павла Николаевича Яблочкова был назван кратер на обратной стороне Луны.

Вспышка русского света: лампа русского инженера

Лампочка накаливания кажется невероятно простым устройством. Однако ее появлению предшествовали десятки разнообразных прототипов, причем некоторые из них имели весьма изощренную конструкцию. Например, в середине XIX века были распространены дуговые лампы с хитрыми регуляторами. Поэтому, когда Павел Яблочков изобрел лампочку без регулятора, все были поражены простотой ее конструкции и прочили ей великое будущее. Но триумф был недолгим.

Впервые идея о том, что для освещения домов и улиц можно использовать электричество, пришла в голову экспериментаторам еще в самом начале XIX века. Первый известный истории случай освещения помещения с помощью электричества произошел в Санкт-Петербурге в 1802 году. Профессор физики Василий Петров однажды провел такой опыт. К электрической батарее он подсоединил две угольные палочки. Одну соединил проволокой с «плюсом», другую — с «минусом». Когда Петров сблизил концы палочек, ток прошел сквозь воздушный промежуток с одной на другую и возникшая огненная дуга на мгновение осветила лабораторию. Позже, описывая это явление в своем отчете, профессор Петров не забыл упомянуть о световом эффекте: от возникающего между углями белого света, писал он, «темный покой довольно ясно освещен быть может».

За рубежом схожий эксперимент с образованием вольтовой дуги провел английский ученый Гемфри Дэви, и именно его работы подстегнули других присмотреться к возможностям электрического освещения. Оно, впрочем, в тот момент никого всерьез не интересовало — человечество только-только открыло для себя газовое освещение, которое имело ряд преимуществ перед привычными для той поры масляными фонарями. Еще долго после того, как лондонская Пэлл-Мэлл стала первой в мире улицей, где установили газовые фонари, люди не могли нарадоваться новому способу освещения. А в середине XIX века у газового освещения появилась прекрасная альтернатива — керосиновые фонари. Тем временем опыты с электричеством продолжались.

В 1844 году французский физик Жан Бернар Леон Фуко (тот самый, что впоследствии прославился своим опытом с маятником) сделал электроды своей дуговой лампы не из древесного угля, а из твердого кокса. Это увеличило продолжительность горения дуги, а за счет того что Фуко использовал часовой механизм для сближения электродов по мере их сгорания, ему удалось разработать, по сути дела, первую не слишком быстро прогорающую электрическую лампу. В 1848 году он даже применил ее для освещения одной из площадей Парижа, но на тот момент к его разработке отнеслись как к курьезу. Лампа работала недолго, а питалась она не от сети, а от тяжелой электрической батареи и явно не составляла серьезной конкуренции газовым фонарям.

Прозрение Яблочкова

Между тем в свет выходили все новые электрические лампы. Инженеры экспериментировали с материалом электродов, разрабатывали все более совершенные механизмы их сближения, проектировали генераторы для питания своих ламп. Но, несмотря на все усилия разработчиков, электрические лампы оставались слишком дороги и городские власти не спешили отказываться от газовых и керосиновых фонарей в пользу электричества. Весной 1874 году Павел Яблочков разработал прожектор с дуговой лампой для правительственного паровоза, направлявшегося из Москвы в Крым. В течение всей поездки сам разработчик, стоя на передней площадке паровоза, менял угольки, настраивал регулятор и в итоге пришел к выводу, что у дуговой лампы такой системы нет будущего. Он занялся упрощением регулятора лампы, в чем, как выяснилось позже, не было необходимости. Регулятор был просто не нужен! Сделать это открытие Яблочкову помог случай.

Однажды, когда он проводил опыт по электролизу раствора поваренной соли, параллельно расположенные угли, погруженные в электролитическую ванну, случайно коснулись друг друга и между ними вспыхнула электрическая дуга. Благодаря этому эпизоду инженер пришел к замечательной идее: если расположить электроды не друг против друга, а параллельно, можно обойтись без регулятора межэлектродного расстояния. Реализация простой идеи потребовала изобретательности, но Яблочков справился с задачей — стержни-электроды он разделил прокладкой из специальной глины, которая скрепляла угли между собой и изолировала их друг от друга.

Сегодняшним жителям крупных городов может показаться, что фонари были всегда. Однако в средневековые времена даже такие крупные по тем временам города, как Лондон и Париж, погружались во тьму с закатом солнца. Жизнь на улицах замирала, а погулять по городу ночью решались только самые бесстрашные. Так продолжалось до конца 17-го — начала 18-го века.
Масляные фонари. Двигателем прогресса стал французский король Людовик XIV, который в 1667 году принял решения освещать главные улицы Парижа масляными фонарями. Почти в тоже время фонари появляются в Амстердаме. В 1718 году первые фонари устанавливаются в «городе Петра», а при Анне Иоанновне начала освещаться Москва. Работали фонари от конопляного масла, которое было съедобным и поэтому активно расхищалось. Фонарщикам, кстати, приходилось не только доливать в жестяной сосуд фонаря масло, но и следить за фитилем, иначе лампа начинала коптить.
Газовое освещение. В 1807 году на лондонской Пэлл-Мэлл появились первые газовые фонари, и затем газом стали освещаться многие европейские столицы. Спустя три десятилетия после Лондона газовое освещение появилось и в Санкт-Петербурге, а в 1868 году уличные фонари, работающие на газе, появились и в Москве. Первые газовые фонари светили намного менее ярко, чем усовершенствованные модели. Изобретение калильной сети позволило в несколько раз увеличить силу света газовых и керосиновых фонарей.
Керосиновое освещение. Любопытно, что в Москву керосиновое освещение пришло раньше, чем газовое. В отличие от большинства городов мира. Фонари с недорогим по тем временам горючим молниеносно распространились и обрели широкую популярность. Они пришли на смену масляным фонарям, которые к середине 19-го века уже сильно надоели горожанам. «Далее, ради Бога, далее от фонаря! — писал Гоголь. — И скорее, сколько можно скорее проходите мимо. Это счастие еще, если отделаетесь тем, что он зальет щегольский сюртук ваш вонючим маслом».
Электрическое освещение. По-настоящему популярным электрическое освещение становится после того, как Эдисон разрабатывает полную цепочку — от электростанций до конечных потребителей. Однако применять лампы для освещения улиц начинают еще в середине 19-го века. Сперва используют дуговые лампы с регуляторами, затем Яблочков изобретает свою лампу — и она сразу находит широкую популярность, а затем дуговые лампы стремительно вытесняются лампами накаливания. Но яркие дуговые лампы еще долгое время используются для освещения улиц: например, в 1910 году в Москве действовало 440 дуговых электрических фонарей и шесть опытных с лампами накаливания. Последние керосиновые фонари в Москве заменили электрическими в 1926 году, газовые просуществовали дольше — до 1932 года.

В 1875 году, когда Яблочков работал над своим изобретением, дела его мастерской в Москве шли неважно, и ученый перебрался в Париж. Здесь российским специалистом заинтересовался крупный ученый и владелец заводов по производству физических приборов Луи Бреге и предложил ему место в своей фирме. Возможно, именно это событие и предопределило будущий триумф изобретателя. 23 марта 1876 года Яблочков получил французский патент на изобретенную им лампу, а через месяц продемонстрировал свое изобретение в Лондоне. Презентация лампы проходила на «ура», и вскоре европейские газеты начали пестреть заголовками: «Изобретение инженера Яблочкова — новая эра в технике», «Россия — родина электричества» и другими в том же духе. Вскоре свечи Яблочкова появились в продаже и начали расходиться в громадных для того времени количествах. Имя русского инженера стало хорошо известным в Старом Свете, но время триумфа продлилось недолго. Вскоре появилась лампа накаливания и сразу же проявила себя с самой лучшей стороны.

Яблочков Павел Николаевич

Русский электротехник, военный инженер, изобретатель и предприниматель, автор «свечи русского света».

Павел Яблочков родился в 1847 годув родовом имении в Сердобском уезде Саратовской губернии. Семья была не очень богатой, но смогла дать своим детям хорошее воспитание и образование.

Сведений о детских и отроческих годах в биографии Яблочкова сохранилось немного, но известно, что он отличался пытливым умом, хорошими способностями, любил строить и конструировать.

После домашнего образования Павел в 1862 году поступил в Саратовскую гимназию, где считался способным учеником. Долго его учеба в гимназии не продлилась, так как он уехал в Петербург. Здесь он поступил в подготовительный пансион, которым руководил военный инженер и композитор Цезарь Антонович Кюи. Подготовительный пансион помог Павлу Николаевичу поступить в Военно-инженерное училище в 1863 году.

К сожалению, военная школа не полностью удовлетворила будущего инженера, с его разнообразными техническими интересами. В 1866 году, получив звание подпоручика, он был направлен в 5-й саперный батальон инженерной команды Киевской крепости. Новая должность и работа не давали никаких возможностей для развития творческих сил, и в конце 1867 года Яблочков ушел в отставку.

Большой интерес у инженера Яблочкова вызывало применение электричества на практике. Но в России в то время особых возможностей пополнить знания в этом направлении не было. Единственным местом в России, где изучали электротехнику, были Офицерские гальванические классы. За год Павел Яблочков, опять же в офицерской форме, освоил курс школы. Здесь он обучился военно-минному делу, подрывной технике, устройству и применению гальванических элементов, военной телеграфии.

Яблочков прекрасно понимал перспективы развития электричества в военном деле и в обычной жизни. К сожалению, консерватизм военной среды сковывал его возможности и интересы. По окончании обязательной годовой службы он вновь увольняется, и начинается его гражданская работа в качестве электротехника.

Наиболее активно электричество применялось на телеграфе, и Петр Николаевич сразу устроился начальником телеграфной службы Московско-Курской железной дороги. Именно здесь ему пришлось столкнуться с разными вопросами практической электротехники, которые его очень волновали.

Интерес к электротехнике проявился и у других инженеров. Московский политехнический музей стал местом, где собирались энтузиасты этого дела. В музее Павел Николаевич смог заняться практическими опытами. Здесь он встретился с выдающимся русским электротехником В. Н. Чиколевым, от которого узнал об опытах А. Н. Лодыгина по конструированию ламп накаливания. Это направление работы настолько захватило Павла Николаевича, что он забросил свою работу на железной дороге.

Яблочков создал в Москве мастерскую физических приборов. Первым его изобретением был электромагнит оригинальной конструкции. Однако материального благополучия мастерская дать не могла. Дела шли плохо.

Павел Николаевич выручил заказ на устройство электрического освещения железнодорожного полотна с паровоза – для безопасности следования царской семьи в Крым. Работа была завершена успешно и, по сути, стала первым в мире проектом по электрическому освещению на железных дорогах.

Тем не менее отсутствие средств вынудило Яблочкова приостановить работы по применению дуговых ламп, и он решил поехать в Америку на Филадельфийскую выставку, где собирался представить публике свой электромагнит. Средств хватило добраться только до Парижа. Здесь изобретатель встретился с известным механиком-конструктором академиком Бреге. Яблочков начал работать в его мастерской, которая занималась конструированием телеграфных аппаратов и электрических машин. Параллельно он продолжал опыты, связанные с проектом по дуговой лампе.

Его дуговая лампа, вышедшая в свет под названием «электрическая свеча», или «свеча Яблочкова», полностью изменила подходы в технике электрического освещения. Появилась возможность широкого применения электрического тока, в частности для практических нужд.

23 марта 1876 года изобретение инженера было официально зарегистрировано во Франции и в дальнейшем в других странах. Свеча Яблочкова была проста в изготовлении и представляла собой дуговую лампу без регулятора. В том же году на выставке физических приборов в Лондоне свеча Яблочкова стала «гвоздем программы». Весь мир считал, что это изобретение русского ученого открывает новую эру в развитии электротехники.

В 1877 году Яблочков приехал в Россию и предложил российскому военному министерству принять в эксплуатацию его изобретение. Никакого интереса со стороны военных чиновников он не встретил и был вынужден продать изобретение французам.

Время показало, что электрическое освещение победило газовое. В то же время Яблочков продолжил работать над усовершенствованием электрического освещения. Появлялись новые проекты, в частности лампочка «каолиновая», свечение которой проходило от огнеупорных тел.

В 1878 году Яблочков вновь вернулся на родину. На этот раз интерес к его работам проявили разные круги общества. Были найдены и источники финансирования. Павлу Николаевичу пришлось заново создавать мастерские, заниматься коммерческой деятельностью. Первая установка осветила Литейный мост, и в короткое время подобные установки появились в Петербурге повсюду.

Много трудов положил он и на создание первого российского электротехнического журнала «Электричество». Русское техническое общество наградило его своей медалью. Тем не менее внешних знаков внимания было недостаточно. Денег на опыты и проекты по-прежнему не хватало, Яблочков вновь уехал в Париж. Там он закончил и продал свой проект динамо-машины и стал готовиться к первой всемирной электротехнической выставке в Париже в 1881 году. На этой выставке изобретения Яблочкова получили высшую награду, их признали вне конкурса.

В последующие годы Павел Николаевич получил ряд патентов на электрические машины: магнито-электрическую, магнито-динамо-электрическую, на электродвигатель и другие. В его работах в области гальванических элементов и аккумуляторов отразилась вся глубина и прогрессивность замыслов инженера.

Все, что сделал Яблочков, – это революционный путь для современной техники.

В 1893 году он в очередной раз вернулся в Россию. По приезде сильно заболел. Приехав на родину, в Саратов, он поселился в гостинице, так как имение его пришло в упадок. Материальных улучшений не предвиделось. 31 марта 1894 года Павел Николаевич скончался.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий