Mimo антенна что это такое

Что такое Mimo в wifi?

Технология MIMO сыграла огромную роль в развитии WiFi. Несколько лет назад невозможно было представить точки доступа Wi-Fi и другие устройства с пропускной способностью в 300 Мбит/сек и выше. Появление новых скоростных стандартов связи, к примеру, 802.11n произошло во многом благодаря MIMO.

Вообще тут стоит упомянуть, что когда мы говорим о технологии WiFi, то на самом деле имеем в виду один из стандартов связи, а конкретно – IEEE 802.11. Брендом WiFi стал после того, как обрисовались заманчивые перспективы использования беспроводной передачи данных. Чуть подробнее о технологии вай-фай и стандарте 802.11 можно прочесть в этой статье.

Что представляет собой технология MIMO?

Если дать как можно более простое определение, то MIMO – это многопотоковая передача данных. Аббревиатуру можно перевести с английского как «несколько входов, несколько выходов» В отличие от предшественника (SingleInput/SingleOutput), в устройствах с поддержкой MIMO сигнал транслируется на одном радиоканале с помощью не одного, а нескольких приемников и передатчиков. При обозначении технических характеристик устройств WiFi рядом с аббревиатурой указывают их количество. Например, 3х2 – это 3 передатчика сигнала и 2 принимающих антенны.

Кроме того, в MIMO используется пространственное мультиплексирование. За устрашающим названием кроется технология одновременной передачи нескольких пакетов данных по одному каналу. Благодаря такому «уплотнению» канала его пропускную способность можно увеличить в два раза и более.

MIMO и WiFi

С ростом популярности беспроводной передачи данных по WiFi соединениям, конечно же, возросли требования к их скорости. И именно технология MIMO и другие разработки, взявшие ее за основу, позволили увеличить пропускную способность в несколько раз. Развитие WiFi идет по пути развития стандартов 802.11 – a, b, g, n и так далее. Мы не зря упомянули возникновение стандарта 802.11n. Multiple Input Multiple Output – его ключевой компонент, позволивший увеличить канальную скорость беспроводного соединения с 54 Мбит/сек до более 300 Мбит/сек.

Стандарт 802.11n позволяет применять как стандартную ширину канала в 20 МГц, так и использовать широкополосную линию в 40 МГц с более высокими показателями пропускной способности. Как уже упоминалось выше, сигнал многократно отражается, тем самым используя множество потоков на одном канале связи.

Благодаря этому доступ в интернет на основе WiFi теперь позволяет не только серфинг, проверку почты и общение в аське, но и онлайн-игры, онлайн-видео, общение в скайпе и прочий «тяжелый» трафик.

Более новый стандарт – 802.11ac также использует технологию MIMO.

Проблемы применения MIMO в WIFI

На заре становления технологии существовало затруднение совмещения устройств, работающих с поддержкой MIMO и без нее. Однако сейчас это уже не так актуально – практически каждый уважающий себя производитель беспроводного оборудования использует ее в своих устройствах.

Также одной из проблем при появлении технологии передачи данных с помощью нескольких приемников и нескольких передатчиков являлась цена устройства. Однако здесь настоящую ценовую революцию совершила компания Ubiquiti. Ей не только удалось наладить производство беспроводного оборудования с поддержкой MIMO, но и сделать это по очень демократичным ценам. Посмотрите, к примеру, стоимость типичного комплекта компании – Ubiquiti Rocket M5 (базовая станция), Ubiquiti NanoStation M5 (на стороне клиента). И в этих устройствах не просто MIMO, а фирменная улучшенная технология airMax на ее основе.

Проблемой остается только увеличение количества антенн и передатчиков (сейчас максимум 3) для устройств с PoE. Обеспечить питанием более энергоемкую конструкцию затруднительно, но опять-таки, постоянные сдвиги в этом направлении делает Ubiquiti.

Технология AirMAX

Компания Ubiquiti Networks является признанным лидером разработки и реализации инновационных технологий WiFi, в том числе и MIMO. Именно на ее основе Ubiquiti была разработана и запатентована технология AirMAX. Суть ее в том, что прием-передача сигнала несколькими антеннами на одном канале упорядочивается и структурируется протоколом TDMA с аппаратным ускорением: пакеты данных разнесены в отдельные временные слоты, очереди передачи координируются.

Это позволяет расширить пропускную способность канала, увеличить количество подключаемых абонентов без потери качества связи. Данное решение эффективно, удобно в использовании и, что немаловажно – недорого. В отличие от аналогичного оборудования, используемого в WiMAX – сетях, оборудование от Ubiquiti Networks с технологией AirMAX приятно радует ценами.

Mimo антенна что это такое

Мы с вами живем в эпоху цифровой революции, уважаемый аноним. Не успели мы привыкнуть к какой-то новой технологии, нам уже со всех сторон предлагают еще более новую и продвинутую. И пока мы томимся размышлениями, действительно ли эта технология реально поможет нам получить более быстрый интернет или нас просто очередной раз разводят на деньги, конструкторы в это время разрабатывают еще более новую технологию, которую нам предложат взамен текущей уже буквально через 2 года. Это касается и технологии MIMO антенн.

Что же это за технология – MIMO? Multiple Input Multiple Output – множественный вход множественный выход. Прежде всего, технология MIMO является комплексным решением и касается не только антенн. Для лучшего понимания этого факта стоит совершить небольшой экскурс в историю развития мобильной связи. Перед разработчиками стоит задача передать больший объем информации в единицу времени, т.е. увеличить скорость. По аналогии с водопроводом – доставить пользователю больший объем воды в единицу времени. Мы можем сделать это увеличив “диаметр трубы”, или, по аналогии, – расширив полосу частот связи. Первоначально стандарт GSM был заточен под голосовой трафик и имел ширину канала равную 0.2 МГц. Это было вполне достаточно. Кроме того есть проблема обеспечения многопользовательского доступа. Ее можно решить разделив абонентов по частоте (FDMA) или по времени (TDMA). В GSM применяются оба способа одновременно. В итоге мы имеем баланс между максимально возможным количеством абонентов в сети и минимально возможной полосой для голосового трафика. С развитием мобильного интернета эта минимальная полоса стала полосой препятствия для увеличения скорости. Две технологии основанные на платформе GSM – GPRS и EDGE достигли предельной скорости 384 кБит/с. Для дальнейшего увеличения скорости необходимо было расширить полосу для интернет трафика одновременно по возможности используя инфраструктуру GSM. В результате был разработан стандарт UMTS. Основным отличием здесь является расширение полосы сразу до 5 МГц, а для обеспечения многопользовательского доступа – применение технологии кодового доступа CDMA, при котором несколько абонентов одновременно работают в одном частотном канале. Такую технологию назвали W-CDMA, подчеркивая этим, что она работает в широкой полосе. Эта система была названа системой третьего поколения – 3G, но при этом она является надстройкой над GSM. Итак, мы получили широкую “трубу” в 5МГц, что позволило первоначально увеличить скорость до 2 МБит/с.

Как еще можно увеличить скорость, если у нас нет возможности дальше увеличивать “диаметр трубы”? Мы можем распараллелить поток на несколько частей, пустить каждую часть по отдельной небольшой трубе и затем сложить эти отдельные потоки на приемной стороне в один широкий поток. Кроме того, скорость зависит от вероятности ошибок в канале. Уменьшая эту вероятность путем избыточного кодирования, упреждающей коррекции ошибок, применения более совершенных способов модуляции радиосигнала, мы также можем увеличить скорость. Все эти наработки (совместно с расширением “трубы” путем увеличения числа несущих на канал) последовательно применялись в дальнейшем усовершенствовании стандарта UMTS и получили наименование HSPA. Это не замена для W-CDMA, а soft+hard upgrade этой основной платформы.

Разработкой стандартов для 3G занимается международный консорциум 3GPP. В таблицу сведены некоторые особенности разных релизов этого стандарта:

3G HSPA скорость & главные технологические особенности
3GPP релиз Технологии Скорость Downlink (MBPS) Скорость Uplink (MBPS)
Rel 6 HSPA 14.4 5.7
Rel 7 HSPA+
5 MHz, 2×2 MIMO downlink
28 11
Rel 8 DC-HSPA+
2×5 MHz, 2×2 MIMO downlink
42 11
Rel 9 DC-HSPA+
2×5 MHz, 2×2 MIMO downlink,
2×5 MHz uplink
84 23
Rel 10 MC-HSPA+
4×5 MHz, 2×2 MIMO downlink,
2×5 MHz uplink
168 23
Rel 11 MC-HSPA+
8×5 MHz 2×2/4×4 MIMO downlink,
2×5 MHz 2×2 MIMO uplink
336 – 672 70

Технология 4G LTE, помимо обратной совместимости с 3G сетями, что позволило ей одержать верх над WiMAX, способна в перспективе развить еще большие скорости, до 1Гбит/с и выше. Здесь применяются еще более продвинутые технологии переноса цифрового потока в радиоинтерфейс, например OFDM модуляция, которая очень хорошо интегрируется с MIMO технологией.

Итак, что же такое MIMO? Распараллелив поток на несколько каналов можно пустить их разными путями через несколько антенн “по воздуху”, и принять их такими же независимыми антеннами на приемной стороне. Таким образом мы получаем несколько независимых “труб” по радиоинтерфейсу не расширяя полосы. Это основная идея MIMO. При распространении радиоволн в радиоканале наблюдаются селективные замирания. Это особенно заметно в условиях плотной городской застройки, если абонент находится в движении или на краю зоны обслуживания соты. Замирания в каждой пространственной “трубе” происходят не одновременно. Поэтому если мы передадим по двум каналам MIMO одну и ту же информацию с небольшой задержкой, предварительно наложив на нее специальный код (метод Аламуоти, наложение кода в виде магического квадрата), мы можем восстановить потерянные символы на приемной стороне, что эквивалентно улучшению отношения сигнал/шум до 10-12 дБ. В итоге такая технология опять же приводит к возрастанию скорости. По сути это давно известный разнесенный прием (Rx Diversity) органично встроенный в MIMO технологию.

В конечном счете, мы должны понимать, что MIMO должно поддерживаться как на базе, так и у нашего модема. Обычно в 4G число каналов MIMO кратно двум – 2, 4, 8 (в Wi-Fi системах получила распространение трехканальная система 3×3) и рекомендуется, чтобы их число совпадало и на базе и на модеме. Поэтому для фиксации этого факта MIMO определяют с каналами прием∗передача – 2×2 MIMO, 4×4 MIMO и т.д. Пока в настоящее время мы имеем дело преимущественно с 2×2 MIMO.

Какие антенны применяются в технологии MIMO? Это обычные антенны, просто их должно быть две (для 2×2 MIMO). Для разделения каналов применяется ортогональная, так называемая X-поляризация. При этом поляризация каждой антенны относительно вертикали сдвинута на 45°, а относительно друг друга – 90°. Такой угол поляризации ставит оба канала в равные условия, поскольку при горизонтально/вертикальной ориентации антенн один из каналов неизбежно получил бы большее затухание из-за влияния земной поверхности. При этом 90° сдвиг поляризации между антеннами позволяет развязать каналы между собой не менее чем на 18-20 дБ.

Для MIMO нам с вами потребуется модем с двумя антенными входами и две антенны на крыше. Однако остается открытым вопрос поддерживается ли эта технология на базовой станции. В стандартах 4G LTE и WiMAX такая поддержка есть как на стороне абонентских устройств, так и на базе. В 3G сети не все так однозначно. В сети уже работают тысячи устройств не поддерживающих MIMO, для которых внедрение этой технологии приносит обратный эффект – пропускная способность сети понижается. Поэтому операторы пока не спешат повсеместно внедрять MIMO в 3G сетях. Чтобы база могла предоставить абонентам высокую скорость она сама должна иметь хороший транспорт, т.е. к ней должна быть подведена “толстая труба”, желательно оптиковолокно, что тоже не всегда имеет место. Поэтому в 3G сетях технология MIMO в настоящий момент находится в стадии становления и развития, проходит тестирование как операторами, так и пользователями, причем последними не всегда успешно. Поэтому возлагать надежды на MIMO антенны стоит только в 4G сетях. На краю зоны обслуживания соты можно применять антенны с большим усилением, например зеркальные, для которых уже есть в продаже MIMO облучатели

В сетях Wi-Fi технология MIMO зафиксирована в стандартах IEEE 802.11n и IEEE 802.11ac и поддерживается уже многими устройствами. Пока мы наблюдаем приход в 3G-4G сети технологии 2×2 MIMO, разработчики не сидят на месте. Уже сейчас разрабатываются технологии 64×64 MIMO с умными антеннами имеющими адаптивную диаграмму направленности. Т.е. если мы пересядем с дивана на кресло или уйдем на кухню, наш планшет заметит это и развернет диаграмму направленности встроенной антенны в нужном направлении. Нужен ли кому-то будет этот сайт в то время?

Что такое MU-MIMO и что это дает конечному пользователю?

Что такое MIMO?

MIMO – технология увеличения спектральной эффективности радиоканала (его пропускной способности и помехоустойчивости), достигается это методом пространственного кодирования сигнала, когда прием и передача данных ведется системами из нескольких антенн на одном канале. Реализовано как пространственное разнесение на приёме, так и пространственное разнесение на передаче. Чтобы МИМО работал нужно многолучевое распространение сигнала. Эта технология широко применяется в беспроводных сетях протокола 802.11ax, ac, n, а также в более старших – LTE и WiMAX.

SU-MIMO и MU-MIMO: в чем различие?

MU-MIMO означает многопользовательский, множественный вход, множественный выход и является беспроводной технологией, поддерживаемой маршрутизаторами и конечными устройствами. MU-MIMO – это следующая эволюция однопользовательского MIMO (SU-MIMO), когда роутер в один момент времени отправляет данные одному клиенту.

Работа многопользовательского МИМО начинается с 802.11ax, 802.11ac Wave2. Старшие стандарты, такие как 802.11b, g и n его не поддерживают. Когда в 2015 году вышел стандарт ac Wave 2, с этой технологией могли работать только маршрутизаторы и точки доступа.

Технология MU-MIMO изнутри

В 2008 году стандарт 802.11n представил технологию multi-in multi-out (MIMO), предназначенную для повышения пропускной способности Wi-Fi между точками доступа и клиентскими устройствами. Чтобы MIMO работал, две беспроводные станции (т.е. и точка доступа, и клиентское устройство) должны иметь несколько антенн, которые идентичны и физически отделены друг от друга фиксированным расстоянием, чтобы отсутствовала разность фаз на рабочей длине волны.

Пространственное мультиплексирование (Spatial Mutiplexing)

Пространственный поток представляет собой набор данных, посланный передающими антеннами, который может быть математически реконструирован на антеннах приемника. В MIMO каждый пространственный поток передается с разных антенн в том же частотном канале, на котором работает передатчик. Рисунок ниже иллюстрирует это для случая с двумя потоками.

Приемник принимает каждый поток на идентичную радио цепь. Поскольку он знает смещения фазы своих собственных антенн, он может использовать математические методы обработки сигналов для реконструкции исходных потоков. Чтобы повысить пропускную способность нужно увеличивать количество потоков. Каждый пространственный поток содержит набор уникальных данных, а количество независимых пространственных потоков ограничено тем, какое Wi-Fi устройство имеет наименьшее количество радиолиний.

В первой волне 802.11ac пропускная способность повышалась не только за счет использования MIMO, а применялись и другие механизмы:

  • использование большей ширины канала;
  • более сложная схема модуляции и кодирования 256-QAM.

Однако общая ширина полосы в любом частотном диапазоне является “конечной” и это накладывает свои ограничения. Чем шире канал, тем больше он подвержен помехам.

Федеральная комиссия связи ведет работу над открытием большего количества нелицензированного спектра в 5 ГГц для Wi-Fi. Но каналы шириной в 80 и 160 МГц на практике остаются редко достижимыми из-за наличия помех. Чем выше модуляция, тем чище должен быть сигнал. Это означает одно – между точкой доступа и клиентами должен быть действительно хороший сигнал, практически такое возможно только когда они находятся на близких расстояниях в отсутствии помех.

Beamforming (адаптивное формирование диаграммы направленности луча)

Многопользовательский MIMO (MU-MIMO) повышает пропускную способность канала за счет одновременной передачи данных на множество клиентов. Но есть еще другая эффективная технология – формирование диаграммы направленности луча в нисходящем канале – TxBF.

TxBF впервые была представлена в стандарте 802.11n, но широкого распространения не получила. Если в MIMO с каждой антенны отправляются разные пространственные потоки, то при формировании луча с нескольких антенн отправляется один и тот же поток со сдвигом фаз.

Роутер отправляет служебную информацию к клиенту со всех своих антенн, а клиент в обязательном порядке отвечает роутеру матрицей, которая указывает, что он увидел от каждой из антенн. Программное обеспечение маршрутизатора вычисляет примерное местоположение клиента и вносит поправки в работу всех своих передатчиков таким образом, что бы максимизировать сигнал на клиенте.

Например, для устранения замираний на одной из антенн изменяется фазовый сдвиг или увеличивается амплитуда сигнала для прохождения преграды. Если сигнал с разных антенн приходит синфазно и с одинаковой мощностью, он складывается – это понятие называется конструктивной интерференцией. В этом случаем за счет увеличения мощности сигнала возрастает скорость передачи данных и максимальное расстояние до клиента. И наоборот если приходит два сигнал с противоположной фазой они гасятся, и результирующая амплитуда сигнала может быть равна нулю – это называется деструктивной интерференцией радиоволн.

Для формирования диаграммы направленности требуется использование фазированной антенной решетки, в которой имеется множество одинаковых антенн и они разнесены на фиксированное друг от друга расстояние (для работы в противофазе).

За счет одновременной передачи данных сразу нескольким клиентам и поддержки множества пространственных потоков MU-MIMO позволяет увеличить канальную скорость в полосе.

Умея контролировать фазовую диаграмму направленности антенны, можно управлять зонами с максимальной конструктивной интерференцией – там, где сигнал является самым сильным, так и зонами с максимальной деструктивные интерференцией – там, где сигнал является самым слабым. А имея матрицу с параметрами сигналов от клиентов и зная их относительное положение, можно создавать шаблон для связи сразу с несколькими клиентами одновременно и независимо.

Механизм передачи информации в MU-MIMO

  1. AP передает сигнальный зондирующий кадр;
  2. Каждое MU-MIMO-совместимое клиентское устройство передает назад точке доступа матрицу с данными;
  3. AP вычисляет относительную позицию каждого связанного клиентского устройства;
  4. Точка доступа выбирает группу клиентских устройств для одновременной связи;
  5. AP вычисляет необходимые смещения фазы для каждого потока данных для каждого клиента в группе и передает все потоки данных группе клиентов;
  6. AP отправляет BlockAckRequest каждому клиентскому устройству в группе отдельно, чтобы получить подтверждение того, дошли ли данные до клиентского устройства;
  7. AP получает BlockAck от каждого клиентского устройства в группе, которая успешно получила данные;
  8. Связь установлена и начинается передача данных.

Максимальное количество одновременно работающих клиентов на единицу меньше, чем общее количество доступных потоков роутера. Это математическое ограничение и вот почему. Точка доступа должна контролировать как зоны максимальной конструктивной интерференции для фокусирования самого сильного сигнала на клиентском устройстве, так и зоны максимальной деструктивной интерференции, чтобы минимизировать сигнал на других клиентских устройствах в этой группе.

Математически число переменных превышает число неизвестных, поэтому одним потоком нельзя управлять независимо. Таким образом, для текущего поколения точек доступа 802.11ac Wave 2 с поддержкой MU-MIMO 4×4: 4 допустима следующая комбинация групп:

  • Одно потоковое клиентское устройство 3×3: 3 и одно потоковое клиентское устройство 1×1: 1;
  • Два потоковых клиентских устройства 2×2: 2;
  • Одно потоковое клиентское устройство 2×2: 2 и до двух потоковых клиентских устройств 1×1: 1;
  • До трех потоковых клиентских устройств 1×1: 1.

Совместное использование пространственного мультиплексирования и адаптивного формирования диаграммы направленности луча позволяет:

  1. повысить помехоустойчивость системы (уменьшить вероятность ошибки);
  2. повысить скорость передачи информации в системе;
  3. увеличить зону покрытия;
  4. уменьшить требуемую мощность передатчика.

IoT (Интернет вещей) и MU-MIMO

Стандарт 802.11ax может поддерживать одновременно восемь передач MU-MIMO, по сравнению с четырьмя в 802.11ac. Одновременная поддержка восьми выделенных каналов позволяет большему количеству IoT устройств установить связь с точкой доступа и избежать проблем с пропускной способностью, которые существовали в более ранних версиях Wi-Fi, включая 802.11ac. Это особенно актуально, если в помещении большое количество устройств, обладающих низкой скоростью передачи данных (а это как раз и есть IoT).

Практические ограничения MU-MIMO

  1. Работа возможна только с клиентами поддерживающими 802.11ac и ax. Клиент должен принять информацию, предназначенную сразу нескольким клиентам, вычленить оттуда то, что предназначено только ему, обработать данные и отправить в матричном виде обратно роутеру. А для этого он должен уметь обрабатывать сигнальные кадры в дейтограммах, иначе он не сможет принять информацию.
  2. Клиенты должны находиться на значительном друг от друга расстоянии, что бы роутер мог сформировать потоки с разнесением во времени и пространстве. Если на столе будет лежать ноутбук, планшет и телефон, роутер не сможет вычислить пространственное положение каждого устройства и сформировать для него пространственно-временной сдвиг фаз. В этом случае он переключится на обычный МИМО-режим.
  3. Скорость передачи всегда будет выравниваться по самому медленному клиенту! ВСЕГДА!

Видео – увеличение емкости сети с помощью Massive MIMO и 3D Beamforming

Комментарии

Даниил 2021-05-14 10:37:00

Что такое MIMO и зачем оно нужно?

Итак, вы только что купили или только собираетесь новый беспроводной модем, и у него есть два порта для подключения вашей антенны, и вы, вероятно, задаетесь вопросом, какой использовать, и зачем вам два?

Как это было

Все мы привыкли, что мобильная связь и радиопередачи используют одну антенну. Одна антенна побольше, на огромной вышке передает сигнал и одна антенна поменьше уже у вас в руках или на крыше автомобиля, например, принимает это сигнал, они точно так же работают и в обратную сторону. Антенна, которая на вышке, в свою очередь, ретранслирует сигнал в пункт назначения, адресату которому вы звонили в случае с телефоном, или же принимает сигнал с радиостанции в случае с радио.

Эта технология проста и эффективна для передачи телефонного звонка.

Однако спрос на быстрый интернет растет, пропорционально росту людей, обучившихся использованию интернета и гаджетов, соответственно пропускную способность нужно тоже улучшать, иначе это приведет к неизбежному ухудшению связи. (По аналогии с пробкой в часы пик на трассах в городе) Это не касается радио, потому что каждый клиент только принимает сигнал, соответственно увеличение числа реципиентов никак не влияет на качество, но напрямую зависит на телефонную связь и интернет.

Если вы пользовались 3G-интернетом в течение нескольких лет, вы, вероятно, заметили, что заявленные максимальные скорости быстро растут. Начиная примерно с 3,6 Мбит/с для первой серии «широкополосных» широкополосных мобильных устройств, до 7,2 Мбит/с в 2007 г., до 21 Мбит/с в 2008 г., до 42 Мбит/с вскоре после этого, и теперь до 100 Мбит/с с введением 4G в конце 2011 г. С 5G стучится в нашу дверь, есть Некоторые считают, что новое поколение может увеличить скорость до 4 раз с 4G.

Так как же увеличить скорость?

Увеличение скорости – непростое дело – теоретически самый большой фактор, ограничивающий скорость, – это пропускная способность.

Каждой телефонной башне присваивается общая ширина частот, на которых она может передаваться, и каждому подключенному человеку выделяется небольшой канал определенной ширины. Это означает, что каждая башня имеет ограниченное число клиентов, которые она может обслуживать, прежде чем она станет перегруженной.

Можно попробовать увеличить скорость – увеличив канал для каждого клиента – это значительно уменьшит количество людей, которое эта вышка сможет обслуживать в одну единицу времени. Увеличит скорость, но уменьшит пропускную способность, соответственно по такому плану надо значительно увеличивать количество вышек. Это работает в городской среде, но не выгодно загородом. Слишком дорого.

Скорость также ограничена отношением сигнал/шум (SNR), для улучшения этого мы можем увеличить мощность (или громкость) передачи, чтобы телефонная вышка могла «лучше слышать» нас, но это приводит к уменьшение дальности действия.

После того, как мы снизили все характеристики, которые мы можем получить от передачи от антенны к антенне, мы должны подойти к проблеме по-другому.

Вот где MIMO начинает играть – если мы не можем улучшить воздушную передачу, почему бы не увеличить количество антенн?

MIMO – это акроним Multiple-In, Multiple-Out, что переводится как «множественный вход, множественный выход».

Нам нужно больше антенн!

Используя несколько антенн, мы можем забыть о трудностях передачи по воздуху и вместо этого возложить нагрузку на оборудование обработки сигналов в вашем модеме.

Поскольку все антенны передают на одинаковых частотах, от телефонной вышки не требуется дополнительная полоса пропускания для каждого пользователя.

Данные сначала разделяют на несколько потоков, а потом собираются в точке приема. Приемник спроектирован так, чтобы учитывать небольшую разницу во времени между приемами каждого сигнала, а также дополнительные шумы или помехи и даже потерянные сигналы.

Важно знать, что MIMO включается и выключается модемом.

Решение о том, использовать ли MIMO, согласовывается с вышкой сотовой связи, в результате чего оценивается качество принятых и передаваемых сигналов (показатель, известный как CQI).

Когда уровень или качество сигнала низкое, модему сложно различить два потока данных, поэтому, когда уровни сигнала падают ниже определенного порогового уровня, MIMO выключается, и модем работает только с одной антенной.

Выводы

Из всего выше сказанного можно сделать вывод что MIMO – это технология улучшения передачи и приема сигнала, путем использования нескольких антенн. Это не означает, что нужно покупать две одинаковых антенны таким образом имитировать MIMO, это так не работает. Есть специальные антенны, которые уже «заточены» под данную технологию. Список антенн с MIMO в наших магазинах. Но тут важно понимать, что хоть потенциально MIMO может дать быстрее скорость, оно несет и большие расходы, т.к. обычно такие антенны чуть дороже обычных аналогов, а также необходимо покупать не одну кабельную сборку, а две (исключение антенны в которых модем находится в самой антенне). А также сам MIMO может по итогу не работать по причине упомянутой в тексте выше.

Статья имеет ознакомительный характер и не претендует на истину в научном плане, некоторые понятия могли быть упрощены или искажены для упрощения понимания читателем.

Портал о современных технологиях мобильной и беспроводной связи

MIMO – м ногоантенные технологии в LTE

Функции MIMO (M ultiple Input – Multiple Output )

Применение технологий MIMO (multiple input – multiple output) решает две задачи:

– увеличение качества связи за счет пространственного временного/ частотного кодирования и (или) формирования лучей (beamforming),

– повышение скорости передачи при применении пространственного мультиплексирования.

Структура MIMO

В различных реализациях MIMO имеется ввиду одновременная передача в одном физическом канале нескольких независимых сообщений. С целью реализации действия MIMO применяют многоантенные системы: на передающей стороне имеется Nt передающих антенн, а на приемной стороне Nr приемных. Данная структура приведена на рис. 1.

Рис. 1. MIMO структура

Что такое MIMO?

MIMO (англ. Multiple Input Multiple Output) – метод пространственного кодирования сигнала, позволяющий увеличить полосу пропускания канала, при котором передача данных осуществляется с помощью N антенн и их приёма М антеннами. Передающие и приёмные антенны разнесены настолько, чтобы достичь слабой корреляции между соседними антеннами.

История MIMO

История систем MIMO как объекта беспроводной связи пока весьма не продолжительна. Первый патент на использование MIMO-принципа в радиосвязи был зарегистрирован в 1984 году от имени сотрудника Bell Laboratories Джека Винтерса (Jack Winters). Основываясь на его исследованиях, Джек Селз (Jack Salz) из той же компании опубликовал в 1985 году первую статью по MIMO-решениям. Развитие данного направления продолжалось специалистами Bell Laboratories и другими исследователями вплоть до 1995 года. В 1996 году Грэг Ралей (Greg Raleigh) и Джеральд Дж. Фошини (Gerald J. Foschini) предложили новый вариант реализации MIMO-системы, увеличив тем самым ее эффективность. Впоследствии Грэг Ралей, которому присваивают авторство OFDM (Orthogonal Frequency Division Multiplexing – мультиплексирование посредством ортогональных несущих) для MIMO, основал компанию Airgo Networks, которая разработала первый MIMO-чипсет под названием True MIMO.

Однако, несмотря на довольно короткий промежуток времени с момента своего появления, MIMO-направление развивается весьма многопланово и включает в себя разнородное семейство методов, которые можно классифицировать по принципу разделения сигналов в приемном устройстве. При этом в MIMO-системах используются как уже вошедшие в практику подходы к разделению сигналов, так и новые. К ним относятся, например, пространственно-временное, пространственно-частотное, пространственно-поляризационное кодирование, а также сверхразрешение по направлению прихода сигнала в приемник. Благодаря обилию подходов к разделению сигналов удалось обеспечить столь долгую разработку стандартов на использование систем MIMO в средствах связи. Однако все разновидности MIMO направлены на достижение одной цели – увеличение пиковой скорости передачи данных в сетях связи за счет улучшения помехоустойчивости.

Простейшая антенна MIMO

Простейшая антенна MIMO – это система из двух несимметричных вибраторов (монополей), ориентированных под углом ±45° относительно вертикальной оси (рис.2).

Рис. 2 Простейшая антенна MIMO

Такой угол поляризации позволяет каналам находиться в равных условиях, поскольку при горизонтально-вертикальной ориентации излучателей одна из поляризационных составляющих неизбежно получила бы большее затухание при распространении вдоль земной поверхности. Сигналы, излучаемые независимо каждым монополем, поляризованы взаимно ортогонально с достаточно высокой взаимной развязкой по кросс-поляризационной составляющей (не менее 20 дБ). Аналогичная антенна используется и на приемной стороне. Такой подход позволяет одновременно передавать сигналы с одинаковыми несущими, модулированными различным образом. Принцип поляризационного разделения обеспечивает удвоение пропускной способности линии радиосвязи по сравнению со случаем одиночного монополя (в идеальных условиях прямой видимости при идентичной ориентации приемных и передающих антенн). Таким образом, по сути любую систему с двойной поляризацией можно считать системой MIMO.

Дальнейшая эволюция MIMO

К тому моменту, когда технология MIMO была специфицирована в релизе 7, шло активное распространение по миру стандарта 3G. Были попытки совместить сети третьего поколения с технологией MIMO, но широкого распространения не получили. По данным Глобальной Ассоциации Поставщиков Мобильного Оборудования ( Global mobile Suppliers Association, GSA) от 04.11.2010 на тот момент из 2776 типов устройств с поддержкой HSPA, представленных на рынке, только 28 моделей поддерживают MIMO. К тому же внедрение MIMO сети с низким проникновением MIMO-терминалов приводит к снижению пропускной способности сети. Компания Nokia разработала технологию для минимизации потерь пропускной способности, но она показала бы свою эффективность только в том случае, когда проникновение MIMO-терминалов составило бы не менее 40% абонентских устройств. Добавляя к выше сказанному, стоит напомнить, что 14 декабря 2009 года состоялся запуск первой в мире мобильной сети на базе технологии LTE, которая позволяла достичь гораздо более высоких скоростей. Исходя из этого видно, что операторы были нацелены на скорейшее развертывание сетей LTE, нежели на модернизацию сетей третьего поколения.

На сегодняшний день можно отметить бурный рост объема трафика в сетях подвижной связи 4 поколения, и чтобы обеспечить необходимую скорость всем своим абонентам, операторам приходится искать различные методы по повышению скорости передачи данных или по повышению эффективности использования частотного ресурса. MIMO же позволяет в имеющейся полосе частот передавать почти в 2 раза больше данных за тот же временной промежуток при варианте 2х2. Если же использовать антенную реализацию 4х4, то, к сожалению, максимальная скорость загрузки информации составит 326 Мбит/с, а не 400 Мбит/с, как предполагает теоретический расчет. Это связано с особенностью передачи через 4 антенны. Каждой антенне выделены определенные ресурсные элементы (РЭ) для передачи опорных символов. Они необходимы для организации когерентной демодуляции и оценки каналов. Расположение этих РЭ изображено на рис. 3. Передающим антеннам присваивают номера логических антенных портов. Символы, помеченные R0 передает порт 0, символы R1 – порт 1 и т.д. В итоге 14,3% от всех РЭ выделено на передачу опорных символов, чем и обусловлено различие теоретической и практических скоростей.

Рис. 3 Расположение РЭ для передачи опорных символов в субкадре при MIMO 4×4

В заключение можно сделать вывод, что MIMO оправдала себя как перспективная технология для построения мобильных систем широкополосного радиодоступа со скоростями в сотни Мб/с.

Подробно ознакомиться с функционированием технологии MIMO, конфигурацией антенн MIMO на сетях операторов мобильной связи, а также перспективах применения многоантенных систем ( Massive MIMO ) в сетях новых поколений можно в новой книге “Мобильная связь на пути к 6G”.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий