Почему свободные электромагнитные колебания со временем затухают

Электромагнитные колебания – свободные затухающие и вынужденные колебания

Электромагнитные колебания в контуре, состоящем из катушки индуктивности и конденсатора, происходят благодаря периодическому превращению электрической энергии в магнитную и обратно. При этом периодически изменяются электрический заряд на обкладках конденсатора и величина тока через катушку.

Электромагнитные колебания бывают свободными и вынужденными. Свободные колебания, как правило, являются затухающими из-за ненулевого сопротивления контура, а вынужденные колебания — это, обычно, автоколебания.

Чтобы получить в колебательном контуре свободные колебания, необходимо сначала вывести данную систему из состояния равновесия: сообщить конденсатору начальный заряд q0, либо каким-то образом инициировать импульс тока I0 через катушку.

Это послужит своеобразным толчком, и свободные электромагнитные колебания возникнут в контуре – начнется процесс попеременной зарядки и разрядки конденсатора через катушку индуктивности и, соответственно, попеременного нарастания и спада магнитного поля катушки.

Колебания, которые поддерживаются в цепи под действием внешней переменной электродвижущей силы, называются вынужденными колебаниями. Итак, как вы уже поняли, примером простейшей колебательной системы, в которой можно наблюдать свободные электромагнитные колебания, является колебательный контур, состоящий из конденсатора электроемкостью C и катушки индуктивностью L.

В реальном колебательном контуре процесс перезарядки конденсатора периодически повторяется, но колебания быстро затухают, так как энергия рассеивается в основном на активном сопротивлении R провода катушки.

Рассмотрим схему с идеальным колебательным контуром. Зарядим сначала конденсатор от батареи — сообщим ему начальный заряд q0, то есть наполним конденсатор энергией. Это будет максимальная энергия конденсатора Wэ.

Следующим шагом отключим конденсатор от батареи и подключим его параллельно к катушке индуктивности. В этот момент конденсатор начнет разряжаться, и в цепи катушки возникнет нарастающий ток. Чем дольше разряжается конденсатор — тем больше заряда из него постепенно переходит в катушку, тем большим становится ток в катушке, катушка запасает таким образом энергию в форме магнитного поля.

Этот процесс происходит не мгновенно а постепенно, так как катушка обладает индуктивностью, а значит проявляется явление самоиндукции, которое заключается в том, что катушка как-бы противится нарастанию тока. В какой-то момент энергия магнитного поля катушки доходит до максимально возможного значения Wм (в зависимости от того, сколько заряда изначально было сообщено конденсатору и каково сопротивление цепи).

Далее, из-за явления самоиндукции, ток через катушку поддерживается в том же направлении, но величина его спадает, и электрический заряд в конце концов снова накапливается в конденсаторе. Конденсатор, таким образом, перезарядился. Его обкладки теперь имеют противоположные знаки заряда чем это было в начале эксперимента, когда мы подключали конденсатор к батарее.

Энергия конденсатора достигла максимально возможного для данной цепи значения. Ток в цепи прекратился. Теперь процесс начинает идти в обратном направлении. И так будет продолжаться вновь и вновь, то есть будут иметь место свободные электромагнитные колебания.

Если бы активное сопротивление цепи R было равно нулю, то напряжение на обкладках конденсатора и ток через катушку изменялись бы бесконечно по гармоническому закону — косинуса или синуса. Это и называется гармонические колебания. Заряд на обкладках конденсатора изменялся бы также по гармоническому закону.

В идеальном контуре отсутствуют потери. И если бы так было на самом деле, то период свободных колебаний в контуре зависел бы лишь от величины емкости C конденсатора и индуктивности L катушки. Этот период можно найти (для идеального контура, у которого R=0) по формуле Томсона:

Соответствующие частота и циклическая частота находятся для идеального контура без потерь по следующим формулам:

Но идеальных контуров не существует, и электромагнитные колебания затухают из-за потерь на нагрев проводов. В зависимости от величины сопротивления цепи контура R, каждый последующий максимум напряжения на конденсаторе будет ниже предыдущего.

В связи с данным явлением в физике вводится такой параметр как логарифмический декремент колебаний или декремент затухания. Он находится как натуральный логарифм отношения двух последующих максимумов (одного знака) колебаний:

Логарифмический декремент колебаний связан с идеальным периодом колебаний следующим соотношением, где может быть введен дополнительных параметр, так называемый коэффициент затухания:

Затухание влияет на частоту свободных колебаний. Поэтому формула для нахождения частоты свободных затухающих колебаний в реальном колебательном контуре отличается от формулы для идеального контура (учитывается коэффициент затухания):

Чтобы колебания в контуре сделать незатухающими, необходимо эти потери каждые пол периода восполнять, компенсировать. Что и достигается в генераторах незатухающих колебаний, где источник внешней ЭДС компенсирует своей энергией тепловые потери. Такая система колебаний с источником внешней ЭДС называется автоколебательной.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

ИНФОФИЗ – мой мир.

Весь мир в твоих руках – все будет так, как ты захочешь

Весь мир в твоих руках – все будет так, как ты захочешь

  • Главная
  • Мир физики
    • Физика в формулах
    • Теоретические сведения
    • Физический юмор
    • Физика вокруг нас
    • Физика студентам
      • Для рефератов
      • Экзамены
      • Лекции по физике
      • Естествознание
  • Мир астрономии
    • Солнечная система
    • Космонавтика
    • Новости астрономии
    • Лекции по астрономии
    • Законы и формулы – кратко
  • Мир психологии
    • Физика и психология
    • Психологическая разгрузка
    • Воспитание и педагогика
    • Новости психологии и педагогики
    • Есть что почитать
  • Мир технологий
    • World Wide Web
    • Информатика для студентов
      • 1 курс
      • 2 курс
    • Программное обеспечение компьютерных сетей
      • Мои лекции
      • Для студентов ДО
      • Методические материалы
  • Физика школьникам
  • Физика студентам
  • Астрономия
  • Информатика
  • ПОКС
  • Арх ЭВМ и ВС
  • Методические материалы
  • Медиа-файлы
  • Тестирование

Как сказал.

Вопросы к экзамену

Для всех групп технического профиля

Список лекций по физике за 1,2 семестр

Урок 42. Свободные электромагнитные колебания

  • ” onclick=”window.open(this.href,’win2′,’status=no,toolbar=no,scrollbars=yes,titlebar=no,menubar=no,resizable=yes,width=640,height=480,directories=no,location=no’); return false;” rel=”nofollow”> Печать
  • E-mail

В электрических цепях, так же как и в механических системах, таких как груз на пружине или маятник, могут возникать свободные колебания.

Электромагнитными колебаниями называют периодические взаимосвязанные изменения заряда, силы тока и напряжения.

Свободными колебаниями называют такие, которые совершаются без внешнего воздействия за счет первоначально накопленной энергии.

Вынужденными называются колебания в цепи под действием внешней периодической электродвижущей силы

Свободные электромагнитные колебания – это периодически повторяющиеся изменения электромагнитных величин (q – электрический заряд, I – сила тока, U – разность потенциалов), происходящие без потребления энергии от внешних источников.

Простейшей электрической системой, способной совершать свободные колебания, является последовательный RLC-контур или колебательный контур.

Колебательный контур – это система, состоящая из последовательно соединенных конденсатора емкости C, катушки индуктивности L и проводника с сопротивлением R

Рассмотрим закрытый колебательный контур, состоящий из индуктивности L и емкости С.

Чтобы возбудить колебания в этом контуре, необходимо сообщить конденсатору некоторый заряд от источника ε. Когда ключ K находится в положении 1, конденсатор заряжается до напряжения . После переключения ключа в положение 2 начинается процесс разрядки конденсатора через резистор R и катушку индуктивности L. При определенных условиях этот процесс может иметь колебательный характер

Свободные электромагнитные колебания можно наблюдать на экране осциллографа.

Как видно из графика колебаний, полученного на осцилографе, свободные электромагнитные колебания являются затухающими, т.е.их амплитуда уменьшается с течением времени. Это происходит потому, что часть электрической энергии на активном сопротивлении R превращается во внутреннюю энерги. проводника (проводник нагревается при прохождении по нему электрического тока).

Рассмотрим, как происходят колебания в колебательном контуре и какие изменения энергии при этом происходят. Рассмотрим сначала случай, когда в контуре нет потерь электромагнитной энергии (R = 0).

Если зарядить конденсатор до напряжения U0 то в начальный момент времени t1=0 на обкладках конденсатора установятся амплитудные значения напряжения U0 и заряда q0 = CU0.

Полная энергия W системы равна энергии электрического поля Wэл:

Если цепь замыкают, то начинает течь ток. В контуре возникает э.д.с. самоиндукции

Вследствие самоиндукции в катушке конденсатор разряжается не мгновенно, а постепенно (так как, согламно правилу Ленца, возникающий индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван. Т.е. магнитное поле индукционного тока не дает мгновенно увеличиться магнитному потоку тока в контуре). При этом ток увеличивается постепенно, достигая своего максимального значения I0 в момент времени t2=T/4, а заряд на конденсаторе становится равным нулю.

По мере разрядки конденсатора энергия электрического поля уменьшается, но одновременно возрастает энергия магнитного поля. Полная энергия контура после разрядки конденсатора равна энергии магнитного поля Wм:

В следующий момент времени ток течет в том же направлении, уменьшаясь до нуля, что вызывает перезарядку конденсатора. Ток не прекращается мгновенно после разрядки конденсатора вследствии самоиндукции (теперь магнитное поле индукционного тока не дает магнитному потоку тока в контуре мгновенно уменьшиться). В момент времени t3=T/2 заряд конденсатора опять максимален и равен первоначальному заряду q = q0, напряжение тоже равно первоначальному U = U0, а ток в контуре равен нулю I = 0.

Затем конденсатор снова разряжается, ток через индуктивность течёт в обратном направлении. Через промежуток времени Т система приходит в исходное состояние. Завершается полное колебание, процесс повторяется.

График изменения заряда и силы тока при свободных электромагнитных колебаниях в контуре показывает, что колебания силы тока отстают от колебаний заряда на π/2.

В любой момент времени полная энергия:

При свободных колебаниях происходит периодическое превращение электрической энергии Wэ, запасенной в конденсаторе, в магнитную энергию Wм катушки и наоборот. Если в колебательном контуре нет потерь энергии, то полная электромагнитная энергия системы остается постоянной.

Свободные электрические колебания аналогичны механическим колебаниям. На рисунке приведены графики изменения заряда q(t) конденсатора и смещения x(t) груза от положения равновесия, а также графики тока I(t) и скорости груза υ(t) за один период колебаний.

В отсутствие затухания свободные колебания в электрическом контуре являются гармоническими, то есть происходят по закону

q(t) = q0cos(ωt + φ0)

Параметры L и C колебательного контура определяют только собственную частоту свободных колебаний и период колебаний – формула Томпсона

Амплитуда q0 и начальная фаза φ0 определяются начальными условиями, то есть тем способом, с помощью которого система была выведена из состояния равновесия.

Для колебаний заряда, напряжения и силы тока получаются формулы:

Для конденсатора:

Для катушки индуктивности:

i(t) = I0cos(ω0t + π/2)

U(t) = U0cos(ω0t + π)

Вспомомним основные характеристики колебательного движения :

q0, U0, I0амплитуда – модуль наибольшего значения колеблющейся величины

Т – период – минимальный промежуток времени через который процесс полностью повторяется

ν – Частота – число колебаний в единицу времени

ω – Циклическая частота – число колебаний за 2п секунд

φ – фаза колебаний – величина стоящая под знаком косинуса (синуса) и характеризующая состояние системы в любой момент времени.

Затухающие колебания в контуре и их уравнение

Существуют колебания в системе без источника энергии, называемые затухающими. Рассмотрим реальный контур с сопротивлением не равным нулю. Для примера используют контур с включенным сопротивлением R , с емкостью конденсатора C , с катушкой индуктивности L , изображенный на рисунке 1 . Колебания, происходящие в нем, – затухающие.

Именно наличие сопротивления становится главной причиной их затухания. Данный процесс возможен посредствам потерь энергии на выделение джоулева тепла. Аналог сопротивления в механике – действие сил трения.

Характеристики затухающих колебаний

Затухающие колебания характеризуют коэффициентом затухания β . Применив второй закон Ньютона, получим:

m a = – k x – y v , d 2 x d t 2 + r m d x d t + k m x = 0 , ω 0 2 = k m , β = r 2 m .

Из записи видно, что β действительно является характеристикой контура. Реже вместо β применяют декремент затухания δ ,

Значение a ( t ) является амплитудой заряда, силы тока и так далее, δ равняется количеству колебаний, а N e – период времени уменьшения амплитуды в e раз.

Для R L C контура применима формула с ω частотой.

При небольшой δ ≪ 1 говорят, что β ≪ ω 0 ω 0 = 1 L C – собственная частота, отсюда ω ≈ ω 0 .

При рассмотрении затухающих колебаний последовательного контура колебательный контур характеризуется добротностью Q :

Q = 1 R L C = ω 0 L R , где R , L и C – сопротивление, индуктивность, емкость, а ω 0 – частота резонанса. Выражение L C называют характеристическим или волновым сопротивлением. Для параллельного контура формула примет вид:

Q = R L C = R ω 0 L .

R является входным сопротивлением параллельного контура.

Эквивалентное определение добротности применяется при слабых затуханиях. Его выражают через отношение энергий:

Q = ω 0 W P d = 2 π f 0 W P d , называемое общей формулой.

Уравнения затухающих колебаний

Рассмотрим рисунок 1 . Изменение заряда q на конденсаторе в таком контуре описывается дифференциальным уравнением:

q ( t ) = q 0 e ( – β t ) cos ω t + a ‘ 0 = q 0 e – β t cos ( ω t ) .

Если t = 0 , то заряд конденсатора становится равным q 0 , и ток в цепи отсутствует.

Если R > 2 L C изменения заряда не относят к колебаниям, разряд называют апериодическим.

Значение сопротивления, при котором колебания превращаются в апериодический разряд конденсатора, критическое R k .

Функция изображается аналогично рисунку 2 .

Записать закон убывания энергии, запасенной в контуре W ( t ) при W ( t = 0 ) = W 0 с затухающими колебаниями. Обозначить коэффициент затухания в контуре β , а собственную частоту – ω 0 .

Решение

Отправная точка решения – это применение формулы изменения заряда на конденсаторе в R L C – контуре:

q ( t ) = q 0 e ( – β t ) cos ω t + a ‘ 0 = q 0 e – β t cos ( ω t ) .

Предположим, что при t = 0 , a ‘ 0 = 0 . Тогда применим выражение

Для нахождения I ( t ) :

I ( t ) = – ω 0 q 0 e ( – 2 β t ) sin ( ω t + α ) , где t g α = β ω .

Очевидно, что электрическая энергия W q запишется как:

W q = q 2 2 C = q 0 2 2 C e ( – 2 β t ) cos 2 ( ω t ) = W 0 e ( – 2 β t ) cos 2 ( ω t ) .

Тогда значение магнитной энергии контура W m равняется:

W m = L 2 ω 0 2 q 0 2 e ( – 2 β t ) sin 2 ω t + a = W 0 e – 2 β t sin 2 ω t + a .

Запись полной энергии будет иметь вид:

W = W q + W m = W 0 e ( – 2 β t ) ( cos 2 ( ω t ) + sin 2 ( ω t + a ) ) = = W 0 e ( – 2 β t ) 1 + β ω 0 sin ( 2 ω t + α ) .

Где sin α = β ω 0 .

Ответ: W ( t ) = W 0 e ( – 2 β t ) 1 + β ω 0 sin ( 2 ω t + a ) .

Применив результат предыдущего примера, записать выражение для энергии, запасенной в контуре W ( t ) , при медленно затухающих колебаниях. Начертить график убывания энергии.

Решение

Если колебания в контуре затухают медленно, то:

Очевидно, выражение энергии, запасенной в контуре, вычислим из

W ( t ) = W 0 e ( – 2 β t ) 1 + β ω 0 sin ( 2 ω t + a ) , предварительно преобразовав до W ( t ) = W 0 e ( – 2 β t ) .

Такое упрощение возможно по причине выполнения условия β ω 0 ≪ 1 , sin ( 2 ω t + a ) ≤ 1 , что означает β ω 0 sin ( 2 ω t + a ) ≪ 1 .

Ответ: W ( t ) = W 0 e ( – 2 β t ) . Энергия в контуре убывает по экспоненте.

Свободные затухающие электромагнитные колебания.

Свободные затухающие колебания – это такие колебания, амплитуда которых уменьшается с течением времени вследствие потерь энергии колебательной системой. В электрическом колебательном контуре энергия расходуется на джоулево тепло и на электромагнитное излучение.

Мы рассматривали процесс колебаний в контуре без потерь. Однако в реальных контурах всегда происходят необратимые потери энергии на нагрев проводов и диэлектрика, а также на из­лучение, что приводит к постепенному уменьшению амплитуды электрических колебаний, или, как говорят, к их зату­ханию. При расчете затухания контура полагают, что он имеет сосредоточенное сопротивление, потреб­ляющее то же количество энергии, которое расходуется в контуре на все ви­ды потерь.

Колебания в контуре затухают тем быстрее, чем большая доля первона­чально запасенной в контуре энергии теряется за период колебаний, т. е. чем больше сопротивление потерь по срав­нению с его характеристическим сопротивлением. Отношение характеристиче­ского сопротивления контура, к сопротивлению потерь называется добротностью:

Поскольку мощность потерь пропор­циональна активному сопротивлению контура, а развиваемая в его элементах реактивная мощность пропорциональна их реактивным сопротивлениям, то доб­ротность характеризует также отноше­ние этих мощностей. Чем больше добротность, тем медленнее затухают сво­бодные колебания в контурах с одинаковой частотой собственных колебаний. Используемые в радиотехнике контуры из катушек и конденсаторов обычно имеют добротность от 50 до 300.

Энергия, получаемая антенной передатчика из колебательного контура, распространяется в пространстве в виде электромагнитных волн. Расстояние. которое проходит такая волна за время, равное периоду колебаний, называется длиной волны λ. В соответствии с этим определением λ= υТ= υ/fо,где υ- скорость распространения электромагнитных волн.

Для любой среды

где с- скорость распространения света в вакууме, 3.10 8 м/сек,ε μ-соответственно относительные диэлектрическая и магнитная постоянные среды.

Для воздуха можно считать υ=с и,следовательно, если подставить υ в м/сек,а fо в Мгц, то λ(м)=300/fо(Мгц).

Дифференциальное уравнение затухающих электрических колебаний в контуре, имеющем электрическое сопротивление :

,

где – коэффициент затухания, (здесь – индуктивность контура).

Уравнение затухающих колебаний в случае слабого затухания ( ) (рис. 4.2):

,

где – амплитуда затухающих колебаний заряда конденсатора; – начальная амплитуда колебаний; – циклическая частота затухающих колебаний, .

Время релаксации – это промежуток времени , в течение которого амплитуда колебаний уменьшается в раз:

.

Время релаксации связано с коэффициентом затухания соотношением

.

Логарифмический декремент затухания колебаний

,

где – период затухающих колебаний.

Формула, связывающая логарифмический декремент колебаний с коэффициентом затухания и периодом затухающих колебаний:

.

30.Вынужденные электромагнитные колебания.

Вынужденные колебания – это такие колебания, которые совершаются при наличии внешнего периодически изменяющегося воздействия.

Дифференциальное уравнение вынужденных электрических колебаний в контуре, имеющем электрическое сопротивление , при наличии вынуждающей ЭДС , изменяющейся по гармоническому закону , где – амплитудное значение ЭДС, а – циклическая частота изменения ЭДС (рис. 4.3):

,

где – коэффициент затухания, ; – индуктивность контура.

Рис. 4.3. Контур для наблюдения вынужденных электрических колебаний

Уравнение установившихся вынужденных электрических колебаний:

,

где – разность фаз колебаний заряда конденсатора и вынуждающей ЭДС источника тока.

Амплитуда установившихся вынужденных колебаний заряда конденсатора

.

Разность фаз колебаний заряда конденсатора и вынуждающей ЭДС источника тока

.

Амплитуда вынужденных колебаний зависит от соотношения между циклическими частотами вынуждающего воздействия и собственных колебаний . Резонансная частота и резонансная амплитуда:

; .

Физика. 11 класс

Конспект урока

Физика, 11 класс

Урок 7. Свободные и вынужденные электромагнитные колебания. Колебательный контур

Перечень вопросов, рассматриваемых на уроке:

1) электромагнитные колебания, колебательный контур;

2) универсальность основных закономерностей колебательных процессов для колебаний любой физической природы;

3) гармонические колебания;

4) физический смысл характеристик колебаний.

5) графики зависимости электрического заряда, силы тока и напряжения от времени при свободных электромагнитных колебаниях.

6) определение по графику характеристик колебаний;

7) аналогия между механическими и электромагнитными колебаниями.

8) формула Томсона.

Глоссарий по теме

Электромагнитными колебаниями называют периодические изменения со временем заряда, силы тока и напряжения.

Электромагнитные колебания бывают двух видов – свободные и вынужденные.

Свободными колебаниями называют колебания, возникающие в колебательной системе за счет первоначально сообщенной этой системе энергии.

Вынужденные электромагнитные колебания – это периодические изменения заряда, силы тока и напряжения в цепи под действием переменной электродвижущей силы от внешнего источника.

Система, состоящая из конденсатора и катушки индуктивности, присоединенной к его обкладкам, называется колебательным контуром.

Период электромагнитных колебаний – промежуток времени, в течение которого ток в колебательном контуре и напряжение на пластинах конденсатора совершает одно полное колебание.

Частота колебаний – число колебаний в единицу времени.

Основная и дополнительная литература по теме урока:

Мякишев Г.Я.,Буховцев Б.Б.,Чаругин В.М. Физика.11 класс. Учебник для общеобразовательных организаций. М.: Просвещение, 2014. – С. 74 – 82.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. -М.: Дрофа, 2009. – С. 126 – 128.

Основное содержание урока

Колебательным контуром называется система, состоящая из конденсатора и катушки, присоединенной к его обкладкам, в которой могут происходить свободные электромагнитные колебания

Электромагнитные колебания в контуре происходят с большой частотой и определять его характеристики без осциллографа невозможно.

Развертка получаемая на экране осциллографа схожа с той, что вычерчивает маятник с песочницей над движущимся листом бумаги при колебаниях математического маятника.

Чтобы в колебательном контуре возникли колебания, необходимо сообщить колебательному контуру энергию, зарядив конденсатор от источника тока.

Энергия, полученная конденсатором заключена в электрическом поле обкладок

где – заряд конденсатора, C – его электроемкость.

Между обкладками конденсатора возникает разность потенциалов .

При разрядке конденсатора энергия электрического поля превращается в энергию магнитного поля, определяемая по формуле

где – индуктивность катушки, – сила переменного тока.

Полная энергия колебательного контура равна

Когда конденсатор разрядится полностью, вся энергия электрического поля превращается в энергию магнитного поля. Когда сила тока и созданное им магнитное поле начинает уменьшаться, возникает ЭДС самоиндукции, стремящийся поддержать ток, и начинается перезарядка конденсатора. При свободных колебаниях через промежутки времени, равные периоду колебаний, состояние системы в точности повторяется. Полная энергия такой системы любой момент времени равно максимальной энергии электрического поля или максимальной энергии магнитного поля.

q, u и i – мгновенные значения заряда, напряжения и силы тока. При отсутствии сопротивления в контуре полная энергия электромагнитного поля не изменяется. Колебания затухающие, сопротивление катушки и проводников превращают энергию электромагнитного поля во внутреннюю энергию проводника.

Электромагнитные колебания в контуре имеют сходство со свободными механическими колебаниями. Характер периодического изменения различных величин одинаков. При механических колебаниях периодически изменяются координата тела x и проекция его скорости , а при электромагнитных колебаниях изменяются заряд q конденсатора и сила тока i в цепи.

Индуктивность катушки L аналогична массе тела m, при колебаниях груза на пружине, кинетическая энергия тела , аналогична энергии магнитного поля тока .

Роль потенциальной энергии выполняет энергия заряда конденсатора:

Координата тела аналогична заряду конденсатора.

Полная энергия колебательного контура, в любой момент времени, равна сумме энергий магнитного и электрического полей:

Производная полной энергии по времени равна нулю при R = 0. Следовательно, равна нулю сумма производных по времени от энергий магнитного и электрического полей:

Знак « – » минус в этом выражении означает, что, когда энергия магнитного поля возрастает, энергия электрического поля убывает и наоборот. Физический смысл этого выражения заключается в том, что скорость изменения энергии магнитного поля равна по модулю и противоположна по направлению скорости изменения электрического поля.

Электрический заряд и сила тока, при свободных колебаниях с течением времени изменяются по закону синуса или косинуса, то есть совершают гармонические колебания.

Циклическая частота для свободных электрических колебаний:

Период свободных колебаний в контуре равен:

Период свободных электрических колебаний в колебательном контуре зависит от индуктивности катушки и емкости конденсатора.

Период электромагнитных колебаний – промежуток времени, в течение которого ток в колебательном контуре и напряжение на пластинах конденсатора совершает одно полное колебание.

Частотой колебаний называется величина, обратная периоду колебаний:

Частоту свободных колебаний называют собственной частотой колебательной системы.

Заряд конденсатора изменяется по гармоническому закону:

где – амплитуда колебаний заряда. Сила тока также совершает гармонические колебания:

где – амплитуда колебаний силы тока. Колебания силы тока опережают по фазе колебания заряда на .

Разбор типовых тренировочных заданий

Задача 1. Идеальный колебательный контур состоит из конденсатора ёмкостью 2 мкФ и катушки индуктивности. В контуре происходят свободные электромагнитные колебания. В таблице приведена зависимость энергии W, запасённой в конденсаторе идеального колебательного контура, от времени t.

Свободные и вынужденные электромагнитные колебания

Электромагнитные колебания и их наблюдение

Поскольку основные параметры электрического тока — это его сила и напряжение в различных точках цепи, то проявление электромагнитных колебаний заключается в периодическом изменении этих характеристик вокруг среднего значения. Например, лампочка обычной мигающей елочной гирлянды периодически меняет яркость от нулевой до полной. Следовательно, напряжение на ней также меняется от нулевого до максимального. Если подключить к лампочке стрелочный прибор, то стрелка придет в колебательное движение в такт с изменением яркости.

Больше всего информации о колебаниях содержится в графике. По оси ординат откладывается изменяющийся параметр, по оси абсцисс — время. По графику можно видеть частоту, амплитуду и форму колебаний.

Такой график получают с помощью специального прибора, называемого осциллографом. Осциллограф подключается к исследуемой цепи и на экране рисует график напряжения. При этом бывают многолучевые осциллографы, которые позволяют строить несколько графиков сразу:

Рис. 1. Колебания на экране двухлучевого осциллографа.

Вынужденные и свободные колебания

Колебания яркости свечения гирлянды, о которых сказано выше, — это вынужденные колебания.

Вынужденные колебания — это колебания, совершаемые под действием внешней силы.

В случае с гирляндой в ее цепи имеется специальное устройство, которое создает колебания напряжения, подаваемые на гирлянду. Особенность вынужденных колебаний состоит в том, что они прекращаются немедленно после прекращения внешнего воздействия на систему. Действительно, если выключить мигающую гирлянду из сети, она немедленно потухнет, колебания в ней прекратятся.

Однако существует и другой вид колебаний — свободные колебания.

Свободные колебания — это колебания, которые совершаются под действием внутренних сил системы.

Для существования свободных колебаний система должна отвечать нескольким требованиям. В частности, в ней должны возникать силы, стремящиеся вернуть ее в среднее состояние, и должна быть некоторая инертность.

Колебательный контур

Простейшая электрическая система, в которой могут существовать свободные электромагнитные колебания, — это колебательный контур.

Колебательный контур состоит из катушки индуктивности и емкости, соединенных параллельно.

Рис. 2. Колебательный контур.

И катушка индуктивности, и конденсатор способны накапливать энергию, а потом возвращать ее в цепь. Поэтому если в контуре возникает напряжение, в нём сразу же возникают свободные электромагнитные колебания. Говоря кратко, энергия периодически перетекает от катушки к конденсатору и обратно. Поскольку реальные элементы обладают активным сопротивлением, энергия колебаний выделяется на нём, превращаясь во внутреннюю энергию вещества. Однако происходит это не сразу: напряжение и ток в контуре успевают много раз изменить свое значение, совершая колебания под действием внутренних сил. То есть такие колебания являются свободными затухающими колебаниями.

Рис. 3. График затухающих колебаний в контуре.

Что мы узнали?

Свободные и вынужденные электромагнитные колебания — это периодические изменения напряжения и тока в системе около некоторого среднего значения. Вынужденные колебания совершаются в системе под действием внешних сил. Свободные колебания совершаются под действием только внутренних сил системы. Простейшей системой, где могут существовать свободные электромагнитные колебания, является колебательный контур.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий