Снаббер что это такое

Корректная оценка потери мощности снаббера экономит целый рабочий день

Рейли Лан, Назарено (Рено), Розетти (Maxim Integrated)

Представьте ситуацию: ваш клиент обеспокоен. Он думает, что резистор, стоящий в цепи снаббера (или демпфера) регулятора напряжения, перегревается, и подозревает, что это вызовет отказы при эксплуатации. Меж тем миллионы изделий уже изготовлены и отгружены. Клиент находится перед вашей дверью и собирается просить о помощи. Что вы можете порекомендовать?

Зачем нужен снаббер?

Рассмотрим теорию использования снаббера. На рисунке 1 показан типовой понижающий преобразователь с RC-цепочкой, выполняющей роль снаббера (SNUBBER). Без снаббера в точке Vx – верхняя точка конденсатора – может возникнуть «звон» (высокочастотные колебания, мешающие нормальной работе DC/DC-преобразователя, прим. переводчика). Это может случиться в течение определенного времени, когда второй транзистор включается, не дождавшись полного выключения первого. В течение этого периода времени выходной контур (OUTPUT LOOP) закорочен только паразитными последовательными индуктивностями и параллельными емкостями транзисторов.

Рис. 1. Понижающий DC/DC-преобразователь c RC-снаббером

Теоретически амплитуда звона может в два раза превышать входное напряжение. Плохая трассировка печатной платы также может стать источником звона в цепи. Звон вызывает электромагнитные помехи (EMI) – как излученные, так и наведенные, – которые могут привести к превышению токами и напряжениями транзисторов их предельных пороговых значений, что может вызвать отказ всей схемы. Цепь RC-снаббера уменьшает звон до безопасных величин за счет рассеивания мощности его паразитных колебаний на резисторе.

Отладка

Вернемся к исходной ситуации. Вы посещаете лабораторию клиента и смотрите на переполненную печатную плату с установленным регулятором напряжения. Небольшой ЧИП-резистор с сопротивлением 4,7 Ом и размерами 2х1,2х0,45 мм (размер корпуса 0805) едва заметен. Мог ли он повлиять на работу схемы и нарушить ее?

Клиент объясняет причины своего беспокойства. Резистор, в соответствии со спецификацией, рассчитан на мощность 125 мВт, а расчеты показывают, что он рассеивает больше, чем его номинальная мощность. Расчет рассеиваемой мощности RC-снаббера для напряжения прямоугольной формы V с частотой f определяется простой формулой:

$$P=Ctimes V^<2>times f=680; пФtimes 19.52; Вtimes 500; кГц=129;мВ$$

Проблема заключается не только в том, что рассеиваемая мощность немного (на 4 мВт) выше номинальной мощности резистора. Золотое правило заключается в том, что для обеспечения запаса по мощности необходимо применять резистор с номинальной мощностью в два раза больше рассеиваемой. Следовательно, номинальная мощность резистора отличается более чем на 100%. Так это или не так?

Источник формулы P = CV 2 f

Одной из наиболее популярных формул в электронике является P = CV 2 f. Чтобы доказать это, рассмотрим рисунок 2 , где напряжение в точке Vx (рисунок 1) представлено источником напряжения, приложенным к демпфирующей цепи с указанными на схеме значениями.

Рис. 2. Упрощенная схема демпфера

При положительном скачке напряжения ток через снаббер определяется формулой:

где V – амплитуда скачка напряжения на входе, равная 19,5 В.

Мощность, рассеиваемая на резисторе, определяется следующим уравнением:

Переход от мгновенной мощности к средней требует интегрирования по времени, а именно – расчета энергии. Заметим, что интеграл по полупериоду T/2 для повторяющегося прямоугольного сигнала будет давать практически тот же результат, что и при RC >T_=0.1;нс$$

Тогда поправочный коэффициент будет следующим:

Другими словами, здесь лучше всего работает формула ступенчатой функции, посчитанная ранее. Наконец, для (T_approx tau)

приближение, которое работает лучше всего – это:

Проверка с помощью Simplis

Описанное выше – это вычисления мощности рассеивания и, в целом, общеинженерный вариант подхода к проблеме. Для этого потребовалось вспомнить курсы физики и математики в применении к электрическим схемам. С помощью компьютера вы можете легко смоделировать схему в программе Simplis и получить ответ простым способом.

На рисунке 4 показаны графики мощности, напряжения и тока для случая ступенчатой функции, моделируемой в Simplis.

Рис. 4. Моделирование снаббера в Simplis для ступенчатой функции на входе

Обратите внимание, что пиковая рассеиваемая мощность в этом случае составляет 81 Вт, что говорит о неблагоприятной ситуации в пике.

Метки (R1) (Y2) в середине рисунка 4 указывают, что средняя рассеиваемая мощность составляет 129,28876 мВт, что хорошо согласуется с предыдущим расчетом.

На рисунке 5 показаны формы мощности, напряжения и тока для моделируемого в Simplis второго случая (с реальным временем нарастания и спада).

Рис. 5. Моделирование снаббера в Simplis для входного напряжения с медленно изменяющимися фронтами

Обратите внимание, что пиковая рассеиваемая мощность в этом случае составляет всего 7,5 Вт, что говорит в пользу такого варианта. Метка «Power (R1)(Y2)» в верхней части рисунка 5 также сообщает о средней рассеиваемой мощности 57,383628 мВт, что совпадает с приблизительным расчетом с точностью до 1 мВт.

Работа многих схем DC/DC-преобразователей может быть улучшена при наличии демпфирующей цепочки в точке Vх. С практическими примерами конструирования понижающих преобразователей (в частности – c линейкой Himalaya производства компании Maxim Integrated) и снабберными цепочками можно ознакомиться по ссылкам, приведенным в конце статьи.

Заключение

Мы проанализировали рассеивание мощности на снаббере с нескольких сторон и показали разные способы правильной оценки связанных потерь мощности. Возвратимся к исходной постановке задачи: в конце концов, выяснилось, что проблема была не в цепи RC-снаббера, и поведение схемы было вызвано плохой пайкой. Но не мешает напомнить: разработчику необходимо иметь в арсенале несколько рабочих инструментов, и что еще более важно – в каждой возникшей ситуации найти самый подходящий.

Борьба с паразитными колебаниями в DC/DC преобразователях. Расчёт RC-снаббера

Итак, для начала определимся с объектом нашей борьбы. Для этого рассмотрим схему синхронного buck-конвертера и осциллограмму напряжения, снятую в точке 1 в момент открытия верхнего и закрытия нижнего транзисторов:

Видите синусоиду? Вот с этими паразитными колебаниями мы и будем бороться.

А зачем, собственно, нам это нужно? Да потому, что эти колебания могут вызвать ряд очень неприятных последствий. Одним из таких последствий является перенапряжение, которое может привести к повторному открытию нижнего транзистора или даже к его лавинному пробою. Кроме того, паразитные высокочастотные колебания могут попасть в нагрузку и привести к нарушению работы её компонентов.

Давайте разберёмся, откуда возникают эти паразитные колебания. Возникают они следующим образом: во время выключения нижнего транзистора на его встроенном защитном диоде кратковременно возникает мощный импульс обратного восстанавливающего тока. Поскольку в контуре всегда присутствует некоторая паразитная индуктивность и ёмкость, то образуется колебательный контур, в котором начинает циркулировать наш токовый импульс. Этот процесс продолжается то тех пор, пока вся энергия этого импульса не будет израсходована, после чего колебания прекратятся (полностью затухнут).

Теперь, поняв причину возникновения колебаний, становятся очевидными и пути борьбы с ними:

  1. уменьшение начальной энергии импульса;
  2. уменьшение паразитной индуктивности контура;
  3. уменьшение паразитной ёмкости контура;
  4. 4) использование для ослабления колебаний специальной схемы, известной у буржуев как снаббер (по-нашему — демпфер).

Остановимся подробнее на каждом из этих вариантов:

1) Для уменьшения начальной энергии импульса можно использовать MOSFET-ы со встроенными диодами Шоттки вместо обычных диодов, поскольку у диодов Шоттки меньше обратный восстанавливающий ток. Меньше импульс тока — меньше начальная энергия паразитных колебаний.

2) Паразитная индуктивность контура определяется разводкой платы. Всё это довольно сложно, но один совет можно дать: силовые шины на плате должны быть как можно короче, шире и прямее.

Никогда не задумывались, почему схема DC-DC преобразователя, собранная радиолюбителем “на проводках” может оказаться неработоспособной, хотя та же схема, с теми же номиналами элементов, но собранная на печатной плате, может вполне прилично работать? Виной этому как раз может быть очень большая паразитная индуктивность спаянной “на проводках” схемы (последствия читай выше).

3) Основной частью паразитной ёмкости контура является ёмкость между стоком и истоком транзистора (выходная ёмкость — Coss). Ёмкость Coss определяется из документации на транзистор. В документации обычно приводятся графики зависимости этой ёмкости от напряжения между стоком и истоком. Так что качаете доку на транзисторы, которые предполагается использовать, и выбираете тот, у которого Coss минимальна.

4) Поскольку, в любом случае, невозможно полностью избавиться ни от паразитной ёмкости, ни от паразитной индуктивности (тем более, когда вы проектируете не просто отдельный блок питания, а блок питания в составе какой-либо платы, то чаще всего у вас нет возможности сделать оптимальную разводку), то может получиться так, что величина паразитных колебаний в сделанном вами девайсе абсолютно вас не устроит. В этом случае (когда все остальные пути исчерпаны) для ослабления колебаний можно использовать снаббер. Причём, могу сказать по собственному опыту, что правильно рассчитанный снаббер способен ослабить колебания довольно эффективно.

Простейший снаббер — это последовательно соединенные конденсатор и резистор. Расчёт такого снаббера заключается в определении номиналов конденсатора и резистора, а так же в определении мощности резистора. Как рассчитываются эти величины:

1) Номинал резистора снаббера рассчитывается исходя из того, что оптимальное сопротивление резистора должно быть равно характеристическому импедансу (сопротивлению) колебательного контура:

, где L и C — это соответственно паразитные индуктивность и ёмкость

Как было отмечено выше, паразитная ёмкость — это в основном ёмкость между стоком и истоком транзистора (выходная ёмкость Coss). Её величину можно определить из документации на транзистор. Но как найти величину паразитной индуктивности? Эта величина определяется расчётным путём по осциллограмме. Для этого измеряем осциллографом частоту паразитных колебаний и из соотношения:

f=1/(2*π*√ L*C ), находим паразитную индуктивность: L=1/(4*π 2 *f 2 *C)

2) Величина ёмкости снаббера обычно является компромиссным решением, поскольку, с одной стороны, чем больше ёмкость — тем лучше сглаживание (меньше число колебаний), с другой стороны, каждый цикл ёмкость перезаряжается и рассеивает через резистор часть полезной энергии, что сказывается на КПД (обычно, нормально рассчитанный снаббер снижает КПД очень незначительно, в пределах пары процентов).

Так вот, на практике величину этой ёмкости обычно определяют из условия, что постоянная времени снаббера должна быть в 3 и более раз больше периода паразитных колебаний:

Rsn*Csn=3*T=3/f, где T и f — это, соответственно, период и частота паразитных колебаний, отсюда Csn=3/(Rsn*f)

3) Мощность резистора оценивается по величине энергии, которую он каждый цикл должен рассеивать вследствие перезаряда конденсатора Csn:

PRsn=(1/2)*Csn*Uin 2 *fs, где Uin и fs — это, соответственно, входное напряжение преобразователя и частота, на которой он работает

В дополнение, хочется сказать, что располагать элементы снаббера рекомендуется как можно ближе к силовым ногам транзистора:

Проблемы проектирования IGBT-инверторов: перенапряжения и снабберы

Соединительные шины и звено постоянного тока

Любой реальный проводник характеризуется наличием распределенной паразитной индуктивности LB, особенно важным данный параметр является для силовых цепей импульсных преобразователей. При коммутации больших токов с высокой скоростью это приводит к возникновению перенапряжений на выводах электронных ключей. Например, при отключении IGBT напряжение на коллекторе возрастает на величину ΔV = LB×diC/dt относительно потенциала шины питания VDC, где diC/dt — скорость спада тока коллектора. В результате суммарный сигнал «коллектор–эмиттер» VCE = VDCV может превысить допустимое значение и вывести транзистор из строя.

Аналогичный процесс происходит при открывании IGBT, в этом случае перенапряжение вызывается скачком тока dirr /dtrr (irr , trr — ток и время обратного восстановления) при выключении оппозитного диода. Именно поэтому для диодов, предназначенных для применения в частотных преобразователях, очень важным свойством является плавность характеристики восстановления и согласованность динамических свойств с параметрами IGBT. Всем указанным требованиям отвечают быстрые диоды семейства CAL компании SEMIKRON [1].

Залогом надежного функционирования импульсного преобразовательного устройства является низкоиндуктивный дизайн DC-шины. Существуют достаточно простые правила, соблюдение которых позволяет свести к минимуму распределенные характеристики звена постоянного тока. Как показано на рис. 1а, величина «петли», определяемая несовпадением путей протекания тока по положительному и отрицательному проводникам шины питания, непосредственно связана со значением паразитной индуктивности. Оптимальной считается копланарная структура шины (в англоязычной литературе она называется “sandwich”), в которой терминалы (+) и (–) расположены плоско-параллельно (рис. 1б).

Кроме того, конструкция преобразователя должна обеспечивать кратчайшие связи между источником напряжения (конденсаторами звена постоянного тока) и выводами питания полупроводниковых ключей.

Простейший вариант копланарной DC-шины с межслойным изолятором применен в инверторе мощностью 200 кВА на основе стандартных модулей IGBT (рис. 2а). Эта сборка, выпускаемая компанией SEMIKRON более 20 лет, показала очень высокую надежность во всех режимах эксплуатации. Достоинством показанной конструкции является также простота наращивания мощности за счет параллельного соединения силовых ключей (в данном примере одно плечо инвертора состоит из 2 параллельных модулей).

При серийном производстве, как правило, используются многослойные ламинированные шины. Они представляют собой прессованные плоские сборки, которые состоят из проводников, изолированных друг от друга тонким слоем диэлектрика. Имея симметричную параллельную топологию, такая конструкция обеспечивает согласованную высокую проводимость слоев, оптимизированное значение распределенной емкости и очень низкую паразитную индуктивность. Один из проводников (например, минус силового питания) может также выполнять функции экрана. Кроме повышения надежности, обусловленного минимальным уровнем перенапряжений, это гарантирует хорошую электромагнитную совместимость изделия. В качестве материала проводников обычно используется алюминий, медь и медные сплавы. В окончательном виде набор проводящих и изолирующих слоев прессуется с использованием эпоксидного наполнителя для повышения механической прочности.

Применение ламинированных шин улучшает отвод тепла от силовых модулей и конденсаторов звена постоянного тока и позволяет создать компактные легкие конструкции (например, как на рис. 2б).

Снабберы

Для ограничения переходных перенапряжений в большинстве случаев применяются специальные снабберные конденсаторы, размещаемые непосредственно на DC-терминалах модулей IGBT. В самом общем смысле снаббер работает как фильтр низких частот, замыкающий через себя ток переходного процесса.

Номинал конденсатора Cs вычисляется исходя из заданного уровня перенапряжения Vos и значения энергии, запасенной в паразитной индуктивности шины LB при коммутации тока Ipeak:

Снабберы применяются как для ограничения переходных перенапряжений, так и для снижения динамических потерь в силовых ключах. В последнем случае с их помощью формируется траектория переключения: параллельные емкости снижают скорость нарастания напряжения, индуктивности в цепях коммутации ограничивают скорость нарастания тока. Наиболее распространенные виды снабберных цепей приведены на рис. 3, а их выбор зависит от многих параметров — типа силовых модулей (IGBT, MOSFET, тиристор), рабочей частоты, параметров нагрузки.

Практически все современные транзисторы и модули IGBT имеют прямоугольную область безопасной работы (ОБР или SOA — Safe Operating Area), то есть допускают работу в режиме «жесткого переключения», когда коммутируется максимальный ток и напряжение. В этом случае, как правило, рекомендуется простейший снаббер, представляющий собой низкоиндуктивный пленочный конденсатор, установленный параллельно шинам питания полумоста.

Конструкция снабберной емкости должна обеспечивать не только минимальную распределенную индуктивность, но и удобство подключения к терминалам силового модуля. Внешний вид подобных специализированных элементов показан на рис. 4б–г. Применение обычных высоковольтных конденсаторов (например, как на рис. 4а) в качестве снабберов недопустимо.

Для снижения добротности паразитного колебательного контура последовательно с конденсатором может быть установлен резистор (рис. 3б). Такая схема обычно используется в низковольтных сильноточных преобразователях с MOSFET-ключами.

В случае, когда снаббер должен быть установлен на каждом плече полумоста, или для ограничения скорости коммутации тиристорных ключей рекомендуется цепь, представленная на рис. 3в. Быстрый диод и резистор, используемые в этой схеме, необходимы для разделения цепей заряда и разряда и ограничения разрядного тока. Постоянная времени снаббера — 5 с — должна быть как минимум в 3 раза ниже периода рабочей частоты (RSCS 2 t или ν 2 t. Токи и напряжения пульсаций можно достаточно просто измерить с помощью современных цифровых осциллографов. Следует учесть, что высокий пиковый ток перегрузки способен вывести из строя конденсатор, даже если уровень напряжения при этом ниже справочных значений. Критическим параметром в этом случае является уровень запасаемой энергии, избыток которой способен привести к частичному разрушению (испарению) металлизации пленки в зоне ее контакта с выводами. Как правило, при этом резко возрастает тангенс угла потерь или уменьшается емкость.

Каждое переключение IGBT вызывает появление затухающих колебаний, возникающих в контуре между снабберным конденсатором и емкостью DC-шины. Максимальная амплитуда и частота этих осцилляций (рис. 5) могут быть определены с помощью приведенных ниже формул:

Установившееся значение температуры перегрева снаббера определяется среднеквадратичным значением тока Irms, условиями охлаждения и способом монтажа (например, при стандартной установке снаббера на выводы силового модуля их температура является начальной при расчете). Величина Irms зависит от частоты колебаний, которая в свою очередь определяется паразитной индуктивностью шины LDC и номиналом конденсатора CS. С ростом частоты пульсаций допустимое значение тока снижается из-за роста потерь, практические рекомендации по измерению значения Irms даны ниже.

Методы измерения

В отличие от тока коллектора, который в режиме КЗ может в 6–10 раз превышать номинальное значение, перегрузка IGBT по пиковому напряжению VCES недопустима и практически всегда ведет к отказу. В связи с этим особенно важно проводить измерения максимально возможного перенапряжения (VCEpeak ) конкретной схемы в предельных режимах работы. Отсутствие опасных перегрузок свидетельствует о том, что сам модуль, устройство управления (резистор затвора), дизайн DC-шины, а также тип и номинал снаббера выбраны корректно.

Рекомендуется проводить анализ работы схемы в 4 режимах:

    1. Максимальный ток нагрузки.
    2. Короткое замыкание нагрузки при максимальной и минимальной индуктивности цепи КЗ.

Примечание: существует несколько разновидностей короткого замыкания, например, КЗ нагрузки, КЗ кабеля на стороне нагрузки или на стороне преобразователя рядом с выходными каскадами. Индуктивность цепи замыкания LSC в зависимости от режима может превышать 10 мкГн или быть менее 1 мкГн при аварии непосредственно на выходе инвертора (наихудший случай). Тесты должны предусматривать анализ всех возможных состояний при минимальной и максимальной температуре кристаллов Tj. Наибольшее значение перенапряжения наблюдается при наименьшем значении LSC , когда схема защиты выключает IGBT непосредственно перед выходом из насыщения.

    1. Сквозной пробой при одновременном открывании обоих транзисторов полумоста (эта ситуация исключается при использовании драйверов с функцией Interlock).

Примечание: необходимо проанализировать 2 возможных состояния — одновременное включение верхнего и нижнего плеча полумоста, а также включение IGBT при открытом оппозитном транзисторе.

    1. Запирание оппозитных диодов.

Примечание: выключение диода может сопровождаться появлением пикового выброса напряжения, воздействующего как на сам диод, так и на параллельный IGBT. Наиболее тяжелый режим наблюдается при низком токе ( 2 ×ESR, а величина Tbody может быть измерена термопарой на корпусе снаббера.

Заключение

Проектирование преобразователей высокой мощности является сложнейшей задачей, требующей внимательного подхода на всех этапах. Успешная разработка подобных изделий немыслима без учета распределенных параметров конструкции. Одной из главных характеристик конструкции конвертора является распределенная индуктивность звена постоянного тока, определяющая уровень переходных перенапряжений и во многом влияющая на надежность работы изделия.

В предлагаемой статье приведено объяснение процессов, происходящих при коммутации силовых ключей в инверторных схемах, даны рекомендации по проектированию силовых преобразователей в части расчета уровня коммутационных выбросов, а также выбора типа и номинала снабберных конденсаторов.

Все сказанное проверено многолетним опытом работы дизайнерского центра компании SEMIKRON. За прошедшие годы инженерами и конструкторами фирмы накоплен уникальный опыт разработок мощных конверторов, ярким примером этому служит то, что более 15 000 типов таких изделий успешно эксплуатируется в различных отраслях промышленности. Диапазон выпущенных сборок SEMISTACK простирается от простейших выпрямителей зарядных устройств до блоков, работающих в лифтах, ветроэлектростанциях, гелиоустановках, электромобилях, субмаринах. В первую очередь инженеры компании специализируются на проектировании сложных изделий, главным требованием к которым является надежная работа в тяжелых условиях эксплуатации.

Помехоподавляющая RC-цепочка в реле (сетевой снаббер)

Помехоподавляющая RC-цепочка (сетевой снаббер, сетевой демпфер, RC SNUBBER NETWORKS, RC element) – это устройство, используемое для подавления выбросов напряжения (Surge suppressors) в электрических цепях, устройство гашения импульсных перенапряжений.

Применение RC-цепочек сглаживает и ограничивает коммутационные перенапряжения на элементах схем релейного управления, снижает искрообразование на контактах управляющего реле и тем самым увеличивает его коммутационный ресурс. Предотвращение или сведение к минимуму искрения в контактах реле снижает интенсивность электромагнитного излучения, генерируемого в моменты коммутации, что обеспечивает необходимую помехоустойчивость при работе чувствительных электронных схем.

Дугогасящая RC-цепочка работает в момент размыкания контактов, отключающих катушку, поглощает и подавляет энергию дуги, замыкает выброс напряжения на себя, позволяя паразитной энергии обойти управляющий контакт.

RC-цепочка состоит из соединенных последовательно конденсатора и резистора. Конденсатор должен поглощать энергию импульсов тока и напряжения и обеспечивать защиту от потенциалов, генерируемых индуктивностью в процессе отключения и дребезга контактов. Диэлектрик конденсатора, используемого в снабберной цепи должен выдерживать величину перенапряжения. Резистор должен быть безындуктивного типа для обеспечения высокого быстродействия снаббера и проведения тока импульсной помехи. Искровые разряды и индуцированные шумы, возникающие при коммутации, должны эффективно поглощаться RC-цепочкой.

При управлении электромагнитными устройствами, имеющими значительную индуктивность (например, соленоиды электромагнитных клапанов, катушки электромагнитных пускателей, реле и контакторов), рекомендуется применять помехоподавляющие RC-цепочки в соответствии со схемой, приведенной на рис.1.

Рис. 1. Включение помехоподавляющей RC-цепи в схему управления контакторами. а) схема без RC-цепочки; б) схема с подключенной RC-цепочкой

Подробные осциллограммы, снятые в схеме управления реального АВР приведены ниже на рисунках.

На рис. 2 приведена осциллограмма напряжения 220 В на катушке управляющего реле в схеме без помехоподавляющей RC-цепи, в соответствии с рис. 1а. В схеме использован контактор АВВ ESB 20-11 Выброс напряжения при отключении контактов управляющего реле составил +2200 В (1 дел.=1000 В).

Рис. 2. Оосциллограмма напряжения на катушке управляющего реле в схеме без помехоподавляющей RC-цепи.

На рис. 3 приведена осциллограмма напряжения 220 В на катушке управляющего реле в схеме с установленной помехоподавляющей RC-цепочкой, в соответствии с рис. 1б. В схеме использован контактор АВВ ESB 20-11 Выброс напряжения при отключении контактов управляющего реле отсутствует (1 дел.=1000 В).

Рис. 3. Осциллограмма напряжения на катушке управляющего реле в схеме с установленной помехоподавляющей RC-цепочкой.

Рис. 4. Способ подключения RC-цепи к контактору

Примечание. Применение помехоподавляющей RC-цепочки с указанными параметрами приводит к незначительному увеличению времени отключения контактора/магнитного пускателя. Эта задержка составляет от 0,05 до 0,015 с, в зависимости от типа контактора. В большинстве применений увеличением задержки можно пренебречь.

Неправильный подбор параметров помехоподавляющей RC-цепи на катушке приводит к замедлению работы контактора в определенных режимах работы и еще большему дребезгу его силовых контактов.

RC цепочки:

  • RC-цепочка с конденсатором емкостью 0,1 мкФ/630B DС и резистором с сопротивлением 100 Ом/2 Вт на напряжение – 250/600 В (АС/DC);
  • RC-цепочка с конденсатором емкостью 0,47 мкФ/400 B и резистором с сопротивлением 220 Ом/2 Вт – 127/200 В (АС/DC).

Проектирование снабберных схем

В статье рассматриваются эффективные методы повышения надежности MOSFET в обратноходовых преобразователях.

Принцип работы обратноходовых преобразователей основан на накоплении энергии в трансформаторе при открытом состоянии силового ключа с последующей передачей этой энергии на выход устройства во время закрытого состояния ключа. Обратноходовой трансформатор состоит из двух или более взаимосвязанных обмоток на сердечнике с воздушным зазором, в котором и хранится магнитная энергия до тех пор, пока она не будет передана во вторичную цепь. На практике никогда не удается добиться идеального коэффициента связи между обмотками, поэтому не вся энергия проходит через этот воздушный зазор.

Небольшое количество энергии накапливается внутри и между обмотками. Это явление называется индуктивностью рассеяния трансформатора. При открытии ключа энергия, накопленная в индуктивности рассеяния, не передается во вторичную обмотку, приводя к возникновению высоковольтных всплесков в первичной обмотке трансформатора и в ключе. Кроме того, эта энергия вызывает высокочастотный колебательный процесс в контуре, состоящем из эффективной емкости открытого ключа, индуктивности первичной обмотки и индуктивности рассеяния трансформатора (см. рис. 1).

Если пиковое напряжение всплеска превысит напряжение пробоя переключающего элемента, чаще всего, силового транзистора MOSFET, это приведет к выходу из строя всего устройства. Более того, колебания высокой амплитуды на стоке транзистора вызывают сильные электромагнитные помехи. В источниках питания мощностью выше 2 Вт для ограничения всплесков напряжения на MOSFET используются ограничительные (снабберные) схемы, которые позволяют рассеивать энергию, накопленную в индуктивности рассеяния.

Принцип работы снабберной схемы

Снабберная схема используется для ограничения максимального напряжения на MOSFET до заданного значения. Как только напряжение на MOSFET достигает порогового значения, вся дополнительная энергия рассеяния перенаправляется в снабберную схему, где она либо накапливается и медленно рассеивается, либо возвращается в преобразователь. Одним из недостатков ограничительных схем является то, что они рассеивают энергию, снижая эффективность. В связи с этим существует несколько типов ограничительных схем (см. рис. 2). В некоторых из них используются стабилитроны (диоды Зенера), позволяющие снизить потребление мощности. Однако из-за резкого включения стабилитронов в таких схемах часто возникают электромагнитные помехи. Ограничительные схемы RCD обеспечивают хороший баланс между эффективностью, генерацией электромагнитных помех и стоимостью и потому получили наибольшее распространение.

Ограничительная схема RCD работает следующим образом. Сразу же после закрытия MOSFET диод во вторичной цепи остается обратно смещенным, и ток намагничивания заряжает емкость стока (см. рис. 3а). Когда напряжение в первичной обмотке достигает величины выходного отраженного напряжения VOR, определяемого соотношением витков трансформатора, открывается диод во вторичной цепи, и энергия намагничивания передается во вторичную обмотку. Энергия рассеяния продолжает заряжать трансформатор и емкость стока до тех пор, пока напряжение в первичной обмотке не станет равным напряжению на конденсаторе ограничительной схемы (см. рис. 3б).

В этот момент открывается блокирующий диод, и энергия рассеяния направляется через конденсатор ограничительной схемы (см. рис. 4а). Протекающий через конденсатор ток заряда ограничивает пиковое напряжение на стоке транзистора до величины VIN(MAX) + V C(MAX). После того как энергия рассеяния полностью передана, блокирующий диод запирается, а конденсатор ограничительной схемы до начала следующего цикла разряжается через резистор этой же схемы (см. рис. 4б). Последовательно с блокирующим диодом часто ставят дополнительный небольшой резистор, предназначенный для подавления любых колебательных процессов, возникающих в контуре из индуктивности трансформатора и конденсатора ограничительной схемы в конце цикла заряда. На рисунке 5 показаны циклические пульсации напряжения VDELTA, наблюдаемые в ограничительной схеме, амплитуда которых определяется величиной конденсатора и резистора, стоящих параллельно друг другу.

Принцип работы ограничительной схемы RCDZ аналогичен принципу работы RCD-схемы, за исключением того, что рассеиваемая энергия делится между стабилитроном и стоящим последовательно с ним резистором (см. рис. 2). Стабилитрон предотвращает конденсатор от разряда ниже уровня блокирующего напряжения стабилитрона, что ограничивает рассеяние мощности и улучшает эффективность, особенно при небольших нагрузках. Схема ZD обеспечивает жесткое ограничение напряжения на MOSFET, определяемое величиной блокирующего напряжения стабилитрона. И, наконец, ограничительная схема RCD+Z работает, как и RCD-схема, но введение в нее стабилитрона обеспечивает безопасное ограничение напряжения на MOSFET во время переходных процессов. Как и RCD-схема, она характеризуется пониженной генерацией электромагнитных помех во время нормального режима.

При разработке ограничительных схем необходимо учитывать параметры как трансформатора, так и MOSFET. Если минимальное ограничивающее напряжение ниже VOR трансформатора, ограничительная схема работает как нагрузка. При этом теряется большее количество энергии, чем при рассеивании, что снижает эффективность. При выборе компонентов ограничительной схемы меньших размеров, чем требуется, они перегреваются, не справляются с опасными напряжениями и генерируют электромагнитные помехи. Необходимо, чтобы ограничительная схема обеспечивала защиту MOSFET от любых всплесков входного напряжения питания, тока нагрузки и учитывала допуски на компоненты.

Компания Power Integrations опубликовала руководство по проектированию ограничительных схем Clamp Sizing Design Guide (PI-DG-101), в котором приведена поэтапная последовательность подбора компонентов для четырех основных типов ограничительных схем, применяемых в обратноходовых источниках питания. Это руководство предназначено для использования совместно с программным пакетом PI Expertä. Данная интерактивная программа автоматически подбирает на основе параметров источника питания пользователя все компоненты (включая характеристики трансформатора), необходимые для генерации требуемого рабочего напряжения импульсного источника питания. PI Expertä автоматически создает ограничительную схему, которая, впрочем, слегка отличается от схемы, спроектированной по алгоритму из упомянутого руководства.

Проектирование ограничительной схемы RCD

Ниже приведена последовательность шагов при проектировании ограничительной схемы RCD (подробнее см. руководство Clamp Sizing Design Guide). Все перечисленные ниже значения, не измеренные и не определенные пользователем, следует искать в таблице результатов проектирования PI Expert.

  1. Измерьте LL — индуктивность рассеяния первичной цепи трансформатора.
  2. Проверьте fs — частоту переключения источника питания.
  3. Определите Ip — точное значение тока в первичной цепи.
  4. Определите полное напряжение в первичной цепи MOSFET и рассчитайте Vmaxclamp при помощи следующего выражения:

( Примечание: предусмотрите для MOSFET запас, по крайней мере, в 50 В ниже уровня BVDSS, а дополнительно к нему — запас в 30–50 В на всплески напряжения при переходных процессах).

5. Определите Vdelta — амплитуду пульсаций в ограничительной схеме.

6. Рассчитайте минимальное напряжение в ограничительной схеме:

7. Рассчитайте среднее напряжение в ограничительной схеме:

8. Рассчитайте энергию, накопленную в индуктивности рассеяния:

9. Оцените Eclamp — энергию, рассеиваемую в ограничительной схеме:

10. Рассчитайте величину резистора в ограничительной схеме:

11. Расчетная мощность резистора в ограничительной схеме должна быть больше, чем:

12. Рассчитайте емкость конденсатора в ограничительной схеме:

13. Расчетное напряжение на конденсаторе в ограничительной схеме должно быть больше, чем 1,5Vmaxclamp.

14. В качестве блокирующего диода в ограничительной схеме необходимо использовать диод с коротким или очень коротким временем восстановления.

15. Пиковое обратное напряжение блокирующего диода должно быть больше, чем 1,5Vmaxclamp.

16. Расчетный пиковый ток прямого смещения должен быть больше IP. Если этот параметр не перечислен в таблице данных, средний расчетный ток прямого смещения должен быть больше 0,5IP.

17. Величина демпфирующего резистора (если он используется) выбирается из соотношения:

18. Расчетная мощность демпфирующего резистора должна быть больше, чем

После проведения первоначальных расчетов для проверки рабочих характеристик источника питания необходимо сконструировать прототип такого устройства, поскольку индуктивность рассеяния трансформатора может значительно меняться в зависимости от техники намотки. В некоторых случаях следует измерить среднее напряжение Vclamp и сравнить его с рассчитанным в п. 7 значением (см. рис. 5). В случае существенных различий этих значений можно произвести корректировку Rclamp. Если полученные результаты существенно отличаются от ожидаемых, расчет следует повторить с использованием уточненных данных.

Для расчета параметров ограничительных схем других типов используют аналогичную последовательность шагов, добавляя шаги для каждого нового элемента. Следует быть очень внимательными при выборе диодов и стабилитронов — у них должна быть соответствующая мощность. Почти во всех случаях применения стабилитронов для обеспечения требуемой пиковой мгновенной мощности необходимо использовать цепи подавления всплесков напряжений при переходных процессах.

Расчетная мощность компонентов проверяется методом измерения температур корпусов компонентов в то время, когда источник питания работает на полную нагрузку при минимальном входном напряжении. Если рабочая температура какого-либо компонента схемы выходит за установленные производителем пределы, компонент следует заменить, а схему необходимо тщательно проверить.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий